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Techniques for reducing the order of the second order response are investigated.

These techniques include restricted frequency range, integration time control,

and dominant pole concepts. The class of systems to vhich the technique can be
applied is evaluated.
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EVALUATION

The process of system identification consists of postulating a valid analytical

. mode) for the system under consideration and performing tests on the system to

completely specify or "identify" the parameters which describe the system

analytical model. For example, a linear system is completely characterized by its

Simpulse response, h(t). The system identification process for this linear system

analytical model consists of any procedure that completely determines h(t). The

present consideration in the area of nonlinear system identification is the deriva-

tion of a valid analytical model for the nonlinear system under consideration.

The identification procedure successfully studied is a black box technique

where only in.put and output terminal measurements of the nonlinear system are

used. The identification technique is applicable to a broad class of weakly

noniinear systems whose response can be characterized by a finite Volterra series.

The identification procedure involves processing the input and output responses of

a nonlinear system to obtain a set of linearly independent equations which uniquely

define the parameters of a functional form of the second-order impulsa response.

Theoretically, the proposed identification technique represents a significant im-

provement over existing identification techniques because of its black box formula-

tion. The intent of the study was to determine where this identification technique

can be practically implemented and maintain an advantage over existing tecniques.

To these ends, the practical implementation constraints have been developed,

quantified and assessed for three candidate measurement configurations. The

robustness of the technique to nonlinear circuits with many and/or repeated poles

is the subject of Part It of this final report,

Iiii
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The study effort successfully accomplished, in two parts, a Part I on

implementation feasibility to determine the practical methods and constraints of

implementing three candidate measurement configurations - digital, analog and

hybrid. The second part of the study effort successfully focused on the numerical

computation !:omplexity aspect of the identification technique processing to

determine the class(es) of nonlinear systems for which the technique can be

practically applied. The primary computational complexity arises from the

required matrix inversions for the residue evaluations. Toward the goal of

alleviating these difficulties, matrix scaling, band limited approaches, single

exDonential inputs (multiple input times) and dominant pole concepts were also

developed, quantified and assessed in the successful pursuit of the overall study

objectives.

DANIEL 0. KE .ALY
Project Engineer
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TECHNICAL REPORT SUMMARY FOR RADC-TR-79-

NONLINEAR SYSTEM IDENTIFICATION STUDY
PART II. COMPUTATIONAL COMPLEXITY STUDY

A. STUDY OBJECTIVES

The basic objective of this study effort is to evaluate the
practical feasibility of a nonlinear system identification tech-
nique. The identification procedure studied is a black box
technique where only input and output terminal measurements of
the nonlinear system are used. The identification technique is
applicable to a broad class of weakly nonlinear systems whose
response can be characterized by a finite Volterra series. The
identification procedure involves processing the input and out-
put responses of a nonlinear system to obtain a set of linearly
independent equations that uniquely define the parameters of a
functional form of the second-order impulse response. Theoreti-
cally, the proposed identification technique represents a signif-
icant improvernent over existing identification techniques because
of its black box formulation. The intent of the study is to de-
termine if this identification technique can be practically imple-
inented and maintain an advantage over existing techniques.

The study effort is divided into two parts:

Part I An implementation feasibility study to determine
practical methods of implementing the measurement
scheme - both digital and analog - and to evaluate
the requirements for the components of the measure-
ment scheme.

Part II A computational complexity study of the identifica-
tion technique processing to determine the class of
nonlinear systems to which the technique can be
practically applied.

This final report represents the results of Part II of the
study effort - the computational complexity study.

B. SUMMARY OF RESULTS AND CONCLUSIONS

This part of the study effort focused on identifying the com-
putational limitations of the identification technique that

V



restrict its application to practical systems and on developing
methods of easing these limitations.

The primary computational limitations of the identification
technique arise from the required matrix inversions necessary to
evaluate the system residues. The dynamic range of the matrix
entries increases as the matrix size increases and these entries
can violate the dynamic range constraints of typical general-
purpose computers even for moderate size systems. This problem
is complicated further when the linear system transfer function
is wide band.

Three approaches are suggested for alleviating these computa-
tional problems:

(1) Matrix scaling

(2) Reduction of the order of Y2 (s)

(3) Computational scaling for the total identification tech-
nique.

The third approach was not addressed in detail in the study
but requires a continuous scaling of matrix inversion operations
to take advantage of the total dynamic range of the digital
computer. "

Matrix scaling techniques were investigated on the basis of
known algorithms. The results of this investigation demonstrate
that these techniques offer some relief of the computational
problems but do not substantially increase the applicability of
the identification technique.

A primary conclusion of this study is that the order of the
second order response must be reduced as much as possible while
still maintaining the integrity of the identification technique.
This approach dictates a more extensive measurement process for
the identification technique. Several approaches to accomplish
this reduction of the order of Y2 (s) are postulated in this
report. These approaches include:

(1) Restricted Frequency Approaches - including use of a

low-pass filter at the system output, and appropriate
selection of integration time.

(2) Single Exponential Input - the input signal consists of
a single exponential function x(t) = e-ait instead of

N t
Z e

i=V
*1 vi1



The input is applied N times (changing ai) and an appro-

priate set of measurements is taken. The identification
process is essentially repeated N times to generate the
required set of linearly independent equations.

(3) Dominant Pole Concept - The linear transfer function is
modeled by a lower order transfer function where the
dominant poles are used in the transfer function model.

I The computational problem introduced by a wide-band system,
i.e., a near singular matrix to be inverted, can be avoided by
the following method. The poles of Y2(s) of the form Xi + Xj = Xj
are modeled as single poles at Xj and the residues are combined
to obtain the total residue. A modification of the identifica-
tion technique allows identification of the Ak quantities.

This has been demonstrated for two pairs of poles of the form
X . + j j.

The issue of the isolation of the second-order response from
the total system response was also addressed in this study. It
was shown that it is not necessary to isolate y2(t) from

yl(t) + y2 (t) to identify the linear and second-order impulse
responses. However, it was also shown that yW(t) must be isolated
from third and higher-order system responses In order to identify
the second-order impulse response, h 2 (tlt 2 ).

vii
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SECTION I

INTRODUCTION

A. STUDY OBJECTIVES

The basic objective of this study effort is to evaluate the
practical feasibility of a nonlinear system identification tech-
nique. The identification procedure studied is a black box
technique where only input and output terminal measurements of
the nonlinear system are used. The identification technique is
applicable to a broad class of weakly nonlinear systems whose
response can be characterized by a finite Volterra series. The
identification procedure involves processing the input and out-
put responses of a nonlinear system to obtain a set of linearly
independent equations that uniquely define the parameters of a
functional form of the second-order impulse response. Theoreti-
cally, the proposed identification technique represents a signif-
icant improvement over existing identification techniques because
of its black box formulation. The intent of the study is to deter-
mine if this identification technique can be practically imple-
mented and maintain an advantage over existin• techniques.

The study effort is divided into two parts:

Part I An implementation feasibility study to determine
practical methods of implementing the measurement
scheme - both digital and analog - and to evaluate
the requirements for the components of the measure-
ment scheme.

Part II A computational complexity study of the identifica-
tion technique processing to determine the class of
nonlinear systems to which the technique can be
practically applied.

This final report represents the results of Part II of the
study effort - the computational complexity study. The imple-
mentation feasibility study results were presented in Part I of
this final report (Reference 1).

B. SUMMARY OF RESULTS AND CONCLUSIONS

This part of the study effort focused on identifying the compu-
tational limitations of the idcntification technique that

1



restrict its application to practical systems and on developing
methods of easing these limitations.

The primary computational limitations of the identification
technique arise from the required matrix inversions necessary to
evaluate the system residues. The dynamic range of the matrix
entries increases as the matrix size increases and these entries
can violate the dynamic range constraints of typical general-
purpose computers even for moderate size systems. This problem
is complicated further when the linear system transfer function
is wide band.

Three approaches are suggested for alleviating these computa-
tional problems:

(1) Matrix Scaling

(2) Reduction of the order of Y2 (s)

(3) Computational Scaling for the total identification tech-
nique.

The third approach was not addressed in detail in the study
but requires a continuous scaling cf matrix inversion operations
to take advantage of the total dynamic range of the aigital
computer.

Matrix scaling techniques were investigated on the basis of
the algorithms developed in Reference 2. The results of this
investigation demonstrate that these techniques offer some relief
of the computational problems but do not substantially increase
the applicability of the identification technique.

A primary conclusion of this study is that the order of the
second order response must be reduced as much as possible while
still maintaining the integrity of the identification technique.
In many instances, this approach dictates a more extensive
measurement process than originally required (Reference 1).
Several approaches to accomplish this reduction of the order of

Y2 (s) are postulated in this report. These approaches include:

(1) Restricted Frequency Approaches - including use of a
low-pass filter at the system output, and appropriate
selection of integration time

(2) Single Exponential Input - the input signal consists of
a single exponential function x(t) e-Oit instead of

N C it
£ ei=1

2
7 I.



The input is applied N times (changing ci) and an appro-
priate set of measurements is taken. The identification
process is essentially repeated N times to generate the
required set of linearly independent equations.

(3) Dominant Pole Concept - The linear transfer function is
modeled by a lower order transfer function where the
dominant poles are used in the transfer function model.

The computational problem introduced by a wide-band system,

i.e., a near singular matrix to be inverted, can be avoided by
the following method. The poles of Y2 (s) of the form Xi + A1 = X
are modeled as single poles at XA and the residues are combiged
to obtain the total residue. A iodification of the identifica-
tion technique allows identification of the Ak kj quantities.
This has been demonstrated for two pairs of po e• of the form
Xi + A j

The issue of the isolation of the second-order response from
the total system response was also addressed in this study. It
was shown that it is not necessary to isolate Y2 (t) from
Yl(t) + Y2(t) to identify the linear and second-order impulse
responses. However, it was also shown that Y2 (t) must be isolated
from third and higher-order system responses in order to identify

the second-order impulse response, h 2 (tlt2).

3
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SECTION II

IDENTIFICATION TECHNIQUE

A. IDENTIFICATION TECHNIQUE BACKGROUND

The basic objective of this study (Part II) is to investigate
the computational complexity aspects of an identification tech-
nique for nonlinear systems. The identification technique is
briefly reviewed in this section. The identification technique
is described in detail in the Part I Final Report (Reference 1)
and is based on the analysis presented in Reference 3. This
technique is a "black box" procedure in that only measurements at
the system input and output terminals are required. The identi-
fication technique is applicable to a class of weakly nonlinear
systems whose behavior is adequately characterized in terms of a
finite Volterra functional series given by

N N n
y(t) = y Yn(t) = E _ hn(T 1 ' ' T n H x(t - T ) dp (1)

n=l n=1 n p=l P p

where

Yn (t) is the n order portion of the response

denotes an n-fold integration from -- to +w

n
f denotes an n-fold product.

P=R denotes the number of terms in the infinite volterra series.

The n th-order Volterra kernel hn(Tl, ... Tn) can be referred
to as the nth-order nonlinear impulse response (Reference 4). In
actuality, the nonlinear impulse responses may not be identically
zero above order N. However, the finite sum of equation (1) im-
plies that higher-order terms contr'bute negligibly to the output.

The identification technique developed in Reference 3 is de-

signed to identify the parameters of closed-form expressions for
the nonlinear impulse responses, hn (t, t 2 ,. .. t

F1 4



n 1, 2,...,N. The analysis presented in Reference 3 demon-
strates how the technique identifies the parameters of hl(t),
h2 (tl, t 2 ) and h 3 (tl, t 2 , t 3 ). On the basis of this analysis, it
is believed that the technique is extendable to identification of
higher order nonlinear impulse responses (N > 4). This study
(Part II) is concerned with the computational aspects of the iden-
tification of the linear and second-order nonlinear impulse
responses, hl(t), h 2 (tl,t 2 ).

It has been shown (Reference 3) that, when the linear incre-
mental model of a nonlinear system is described by

N Xit ,t > 0
Z R e

h1 (t) = e , o(2)
0 ,t < 0

where Re {Xi) < 0 and it is assumed that the X are distinct,
the second-order nonlinear impulse response can •e expressed in
the symmetrical form (Reference 3):

M N ktl+akt2

h 2 (tl,t 2 ) = E k2 e U(t 2 - t 1 )kl=1 k 2 =1 Ak 2

+ E Ak kae U(t- t 2 )
kl=1 k 2 -1 1 2

where

M= N2 + 1. (4)

1 ,t>O0
U(t) - (5)

10 ,t < 0

and where the natural frequencies in equation (3) are related to
those in equation (2) according to:

5
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a1  A1,' a 2 = A2'..', aN a AN

a A A 0, A Aa -A
1N+ i = aN+ 2  1l 22 '..., a2N I N

a2N+ X k2 Alf- a2N+2 = X2 - A3''.., a3N-1A 2 AN

ijk=a N+ XN a 2 A3 . X:~~~ 2IA
aN2-N+3 N - 3 aN2 -N+4 AN - .2 ..

aN2+1 11 A N - A N _1. (6)

eordering of the ak terms in equation (3) assumes all
the factors XA - A tobedis inct, such that Ai - Ai Ak for any
i,j,k 1,...,N. Also, the zero entry that resuls from Ai -1  j
when i =j is included only once as the entry aN+I. In addition,
it is readily shown that (Reference 3)

Aklk = A for kI 2 < N (7)
*1 k~1k 2  k2k1 1'2

and that the coefficients of terms in equation(3) having the form

(i -j)tI + Ait2

are identically zero.

The identification technique identifies the parameters of
h2 (t 1 , t 2 ) as represented in equation (3).

B. IDENTIFICATION TECHNIQUE DESCRIPTION

The functional form for h2 (tl, t 2 ) established in equation
(3) implies that the identification of h2 (t 1 , t 2 ) reduces to iden-
tification of the parameters aki, ak, Akjk and N. However,
equations (4) and (6) show that ak , ak R"n N can be determined
once the linear impulse response i; kn6on. Therefore, the task
of identifying these parameters reduces to the task of identify-
ing hl(t). The problem of identifying the coefficients Aklk 2
still remains.

The identification process separates into two distinct steps:
(1) identification of hl(t); and (2) identification of the Ak2
quantities of h2 (t 1 , t 2 ). These two steps are considered be ow.

1. Identification of the Linear Impulse Response, hl(t).

The first step in the identification of hl(t), the linear
impulse response of a nonlinear system, is to excite the system .

tj(
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with an input amplitude such that the output is linear. The amp-
litude of this signal can be determined by exciting the system
with a sinusoidal signal of amplitude A and performing a spectral
analysis of the resultant response. Amplitude A is then adjusted
until the amplitude level of the harmonic frequencies of the
output becomes sufficiently small compared to the level of the
fundamental component. The poles and residues of hi(t) be will
identified using the pencil-of-functions approach (Reference 5).
The pencil-of-functions approach integrates the input to the
linear system and resulting output N times over the real-time
interval (O,T).

It has been shown (Reference 5) that poles of the linear
system satisfy the polynomial equation

SXN-i 1/2 0 (8)

i=O N2+]1 i+l,i+

where G2N+l is the Gram determinant shown in equation (9) below:

'4yl'yl>' ̀cy1,27 -... 71,N+i> 'cy1,2× .. <YlxN+l>

<2,yl> <-Y ,Y2> .. <y2,YN+I> <Y2,X2> ... <Y2,XN+I>

G 2N+= <YN'Yl> <YN'Y2> "'" <YNPYN+l> <YNX 2 > ... <YN'XN+l>

<X2 ,pyl> <X2 ,Y 2 > ... <x2,YNH > <X2 ,X 2 > ... <X2,XN+I>

XN+,yl> <X N+,2 >...'<XN+1,YN+l>"XN+l,X 2 *'' 'XN+lIXN+1>

(9)
and where

t
fxi (T)dT

0 O<t <T
xi+l(t) =(10)

0 elsewhere

7



t

f•yi(p)dt 0 < t < T

Yi+:L(t) =(i

U elsewhere

Further, the residues Ri of the poles Xi satisfy the equation

R -1 c-Y (12)

where

RL
R2

R = residue matrix = 3 (13)

RN

"Y3(T)

Y = output matrix f y 4 (T) (14)

YN+I (T)

C = N x N matrix whose ij th element is defined by

P(T) i x m+(T)
C =E - m+1-= (15)

where

T X (T-t)
P (T) = f e x(T)dT (lb)

0

8



References 1 and 3 describe how this processing can be used to
to determine N.

2. Identification of the Second Order Impulse

Response, h 2 (tlt 2 )

The second step of the identification procbdure is to
k identify the unknown parameters of h2 (t 1 , t 2 ). W h b9tlt 2 )

given by:

M N akltl+ak~t2  • "

h 2 (tl,t 2 ) = Aklke 2
kl=l k 2 =1 1ka t +a t .

M N k2k 1tk
h (t E A e 1 .(17)
kl1 k2 =N kk 2  1 - t 2 )

the only unknown parameters are the Aklk 2 quantities since M, N,
Aki and Ak0 are known from identification of hi(t). A procedure
for determining the Ak k2 using the pencil-of-functions method is
described in this sect on.

The identification procedure utilizes the response of
the weakly nonlinear system to a sum of L decaying exponentials
as described by:

L t
E e t > 0

x(t)=

0 t < 0 (18)

where Re {ai) > 0. The second-order portion of the response to
x(t) is given by

- I
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i .J



M N L L
Y2 (s) Z Z Akk

k 1=1 k2 =1 i=1 J-1 1 2

ai + Ct + 2a k2

+( + a)(a + 2 a )ak2) +
)a+ a+ a + a (

12k= I...,Ni
(a k + 4a ko 2 + . ; +I ( a k

11
(a + a k,(Ocj±. a + (a - a k

2(22

ax + ax + 2ak
+ I2  _ _ _ _ _ _

Theexpessonin quaion(1 )(+theLaplce) (19)s

(a + a u)(a o + 2xpon ia + a k + aa (e

where

e at for j 1,..o.,L; kt se1,..ode

rsos + at + ak be al k 0 for iuj 1. w ke g 1.

an eui Then lexpresysitnequationw(19)r i the Lqaplance tras-vl

interretdia the iplersos fa equivalent linear sys-e scniee ob xie

by an impulse. It follows that the problem of identifying
h 2 (t 1 ,t 2 ) has been reduced to the simpler problem of identifying
a linear system and the pencil-of-functions technique can be used

again.

10 a
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y(t) L 1 {Yp2(s)
S(t) AH(s) - V2(s)

Figure 1. Equivalent Linear System with Transfer
Function Y2 (s)

The system is excited by an input amplitude such that
the output is described by linear and second-order terms, y1 (t)
and Y2 (t). The identification process will operate on the signal
y 2 (t). For this purpose, the second-order portion of the re-
sponse, Y2 (t), is isolated from the total response. y 2 (t) is
obtained by subtracting from the total response, the correspond-
ing linear response yl(t), which is known because hl(t) has been
identified. It is shown in Reference 2 and in Section III.F of
this report that the second-order response Y2 (t) need not be iso-
lated from the total response for the identification procedure to
work. However, isolation of Y2 (t) from the total response eases
the mathematical presentation and is assumed at this point.

Once y2(t) is isolated from the total response, the co-
efficients Akakj are then evaluated by applying the pencil-of-
functions met o• to Y2(t), treating it as though it were the im-
pulse response of a linear system. This latter step is now dis-
cussed in detail.

From equation (19), the poles of Y2 (s) are given by

s = ak + ak2, k 1  1,.... M; k 2 = 1,...,N

s= -(i + ak2P i 1,..., L; k2  = 1,...,N

s=- 2 -( j, i,j1,...,L. (21)

I

11

I



1

First, consider poles of the form s a ak. + ak = 2 Xk; X
- 1,...,N. The terms in Y2 (s) correspon ing t• the pole at 2 X9
are given by

L L
Y 29.9 (s) E Z A ki( + 1 + 1 2

i~ =11 21 Z)1s Z

If the residue of the pole at 2X9. , as evaluated using the pencil-
of-functions method, is a X, it follows that

L L 1
A '_ B7 - 1 Z - 9 1,... ,N. (23)X k 1 X ii Jul (1 j + X)( (a

This procedure results in identification of N of the coefficients.

Consider next poles of the form s = ak- + ak2 = X +X m
where k . m and Z,m = 1,...,N. Since Akm = Am• lor Z., M
the terms in Y2 (s) corresponding to the pole at XZ + Xm are given
by

L L
Y2 9 m(s) E E A

i=l J=1

a, i + a + 2Xt
+ Y9 )(ai +Xi)(ai + a. +X9 . + kXn)

a. + a. + 2X
+ (czj+Xm)(ai+)+ara) (24)

(J + X m)(ai + X m) ( ai + + Xm)S ý(4

If the residue of the pole at A. + X m, as evaluated using the

pencil-of-functions method, is a .m' it follows that

L L a + +2
1A r z j 9. kA.m k9m i-- j=I (aj .)( 1ai + X9z)(ai + a. + X + X )

a + a + 2A m
(a + (Ci + )(cc + Cj + X + ,Si m i m ,m ,...,N

.. •• • m, < m.

a (25)

12



*• This procedure results in identification of N(N - 1)/2 of the
* coefficients.

The remaining unknown N2 coefficients cannot be evalu-
ated directly, as was done in equations (23) and(25), because
the residues of the other poles in Y2 (s) involve linear combina-
tions of more than one unknown coefficient. However, if the
number of exponential input signals, L, is set equal to N, N2

linearly independent equations involving the N2 unknown Aklk 2
coefficients can be obtained by considering the poles of
Y2 (s) of the form s a-- + Xi, i 1,...,N; J 1,...,N, in a
manner similar to the above anaiysis. This fact is proven in
Reference 3. Solution of the N equations completes the identi-
fication process.

13
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SECTION III 1
SYSTEM COMPLEXITY STUDY

A. COMPUTATIONAL COMPLEXITY CONSIDERATIONS

The analyses of Section II and Reference 3 demonstrated that
the theoretical derivation of the identification technique was
restricted to a class of nonlinear systems described by the im-
pulse response of the form

N Xit
Z R. e t > 0

Atog i~l : -
h1 (t) = (26)

Although there appears to be no theoretical limitation preventing
the application of the identification technique to systems with
multiple-order poles, the analysis has not been done to support
this conclusion. The systems modeled by equation (26) represent
a broad class of nonlinear systems to which the technique can be
applied. Practical limitations of the technique will restrict
the class of systems to a subset of those represented by equa-
tion (26). These practical limitations arise primarily from the
computational requirements of the identification technique proc-
essing scheme. These limitations constrain the maximum value of
N, which restricts application of the technique to systems whose
linear incremental model has N poles or less.

This section investigates these computational limitations,
attempts to establish a maximum value for N, and presents
selected techniques to alleviate these computational problems.

1. Computational Complexity Limitations

The numerical computation requirements of the identi-
fication technique are summarized below. They are:

(1) N numerical integrations of input and output
(N is the order of the system).

(2) Formation of 2N+ 1 inner product entries for the
Gram matrix.

14



(3) Evaluation of determinants of N(2N+1) matrices.

(4) Solution of a Nth order polynomial equation.

(5) Evaluation of the N2 Cij entries of the C matrix
in the residue equation.

(6) Inversion of an N dimension C matrix.

(7) Solution of the Aklk 2 quantities (second-orderI system).

The numerical accuracy requirements for these computa-
tions were investigated in Part I of this study (Reference 1).
The numerical accuracy required for satisfactory performance of
the identification technique increases significantly with in-
creasing N. The severest computation requirements are imposed by:
(1) the formation and inversion of the C matrix used in the
residue equation R = C-1 Y; and (2) numerical integration and
formation of the inner products for the appropriate Gram matrix.
These two areas are addressed below.

2. Residue Equation Computational Requirements

The residue equation for the identification technique
is given by

R = C-I Y (27)

The C matrix has dimension N' where N' is the order of the sys-
tem being identified. The C matrix entries are given by

XATe jT T -XjT (T
_ e e J x(T) dT- m + (218

c 0 m=1 X + 1 - (28)
J

where the XI J.J = 1,.. ,N' are the poles of the system being
identified.

For the identification technique, x(t) is of the form

-it
x(t) = e , t > 0 (linear system identification)(29)

or
x(t) = M(t) (secondary system identification) (30)

15
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These x(t) expressions reduce Cij to: H

-kt
(1) for x(t) = e (k > )

1 Xe JT eakT
i j ( k) X J

i-iTa

(2) for x(t) 6 6(t)

eJT (T)m-1
j m=l (m- 1),(X. + 1-m) (32)

It has been noted in previous work (References 2, 4)
that the C matrix tends to be ill-conditioned, which hampers its
computational inversion. Two significant problems complicate
the inversion problem: (1) the dynamic range of the Cij; and
(2) the near singularity of the C matrix when two of the N' poles
are nearly equal. The singularity problem is addressed in Sec-
tions III.B and C while the dynamic range problem is addressed
below.

The computational requirements of inverting the C
matrix are basically determined by its dimension. The dimen-
sion of the C matrix is determined by the number of poles of the
system being identified. Consider a nonlinear system whose
linear transfer function has N poles. The dimension of the C
matrix is then N x N. Identification of the second-order trans-
fer function involves the identification of the residues of thesecond-order response, Y2 (s). The number of poles of Y2 (s) is

N' - N + 3 + L) + L (L + 1) (33)2 2

where L is the number of exponential signals composing the input.
For the general case where L N,

= 2N (N + 1) (34)

16



Figure 2 plots N' as a function of N. It is noted that, for a
10-pole linear system, the calculation of the residues of Y2 (s)
involves inversion of a 240 x 240 matrix. The dimension of the
C matrix for second-order identification grows rapidly with the
number of linear system poles.

The dynamic range of the Ci entries becomes signifi-
cant as the dimension of the C matrix increases since the Cij
entries are inversely proportional to X i, for i - 1,...,N'. This
is demonstrated below.

For identification of the residues of Y2 (s), the input
x(t) is given by

x(t) = Ra 6(t) (35)

where 6(t) is the unit impulse. The C j entries for this input
are given by X T T

Cij = R a T _ - rm (36)

X m=l (Nji ) (m - 1)!

Suppose the system response of interest. Y2 (s), has a maximum

pole/minimum pole ratio - 10. Further, assume that

-10 <_ X T <_-1

or that T = - 1 /Amin'

For the minimum pole Xj min

Ci at 1 (37)(-1 m:1 (-1~ (m 1) 1

For different values of i, C is given by

i C 1

1 1. 3 7 Ra

2 -1.63 Ra

10 -0.35 Ra

17
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For the maximum pole Xj max

iM

=R Le - i+ 1 (38)
)i m=I (-10) (mI

Again, for different values of i, C is given by
: Cij

i Ci

1 -0.1

2 0.09

10 10-8

io olo0
The dynamic range of the Cii entries for a C matrix of

dimension 100 is approximately 10100. For N' greater than 100,

the dynamic range is even greater. This dynamic range can cause

significant difficulty when the inverse of the C matrix is evalu-

ated. For a typical general-purpose computer, the maAimum com-

putable dynamic range is 1076 (10-38 to 1038). Furthermore,

matrix inversion involves multiplication and division of pairs of

matrix entries. The resultant product or division must be in the

allowable dynamic range, which implies that the individual matrix

entries must be well within the dynamic range.

For a system with two poles of its linear transfer

function with a ratio of 10, the computer lim'tatlon constrains

the class of systems to those with N < 4. This problem can be

alleviated somewhat with scaling but not significantly.

A method of reducing the dimension of the C matrix must

be found to ease the computational limitations. This requires

that the number of poles Y2 (s) be reduced.

A significant reduction in the number of poles of Y2 (s)
results if L = 1 instead of L = N, where L is the number of ex-

ponentials used in the input function. For L = 1, the number of

poles of Y2 (s) is given by

N' = N E + 5) + 1 (39)
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This is plotted in Figure 3 along with the plot for L = N. It is
noted that the number of poles of Y2(s) is significantly less for
L ý 1.

It is recalled that L = N was required in order to
generate a linearly independent set of equations from the resi-
due of the poles at s = -ai + ak , i = 1,..., L; k 2 - 1,...,N.
These equations can also be obtained by using L 1 and exciting
the system with N individual inputs and recording the response
to each input. This obviously complicates the identification
procedure but does reduce the magnitude of the matrix inversion
problem.

If the approach is adoptea (L = 1), then the identifi-
cation procedure is modified as follows. The system is excited

by the input x(t) = e-lt. The resultant output is of the form

M Nr2Y2(s)

Y(S) k = Ak+k 2  a )(2a + a + a2 k1=1 k 1 1 2~ (al k 1c~ k1  ak

(- (ak1 a

+( )
22

)(a +I a* + )(a +a
+ (c( 1 + ak1 1k 2 1 k1

)(a+ ak + ak )(s + 23-)ak2 1 k1 k2
(40)

The number of poles in Y2 (s) above is (N/2)(N + 5) + 1. The
Ak .. quantities of the form Ai i = ,...,N are identified
d etly from the residues of the poles at s = 2aj. The
Aklk 2 quantities of the form, At£, m, Z, m = 1,...,N are
identified directly from the residues of the poles at S = at + am.
This procedure identifies N + [(N - 1)/2]N Aklk 2 quantities.

4 ~-a2 t

The system is then excited by the input x(t) = e
The resultant Y2 (s) has (N/2)(N + 5) + 1 poles but the contribu-
tions from N + FN - 1)N/2] poles are known and may be subtracted
out from the second-order response. The resultant Y2 (s) has
2N + 1 poles. The resultant C matrix is reduced to order 2N + 1.
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This process is repeated for each input x(t) = e
i = 3,...,N. Each process results in a set of equations involv-
ing the residue at the poles s = -i + ak2. The first applica-
tion involves inverting an (N/2)(N + 5)+ Imatrix while the re-
maining (N - 1) applications require inversion of a 2N + 1 matrix.

The advantage of this approach is the reduction
achieved in the number of poles of Y2(s). This eases the compu-
tational complexity of matrix inversion. The primary disadvant-
age of the technique is that the identification measurement proc-
ess must be repeated N times in order to identify h 2 (tl,t 2 ).

Another alternative approach to reducing the number of
poles of Y2(s) without significantly increasing the measurement
process is to initially excite the system with an input, x(t) =

e-alt. The residues of the poles at s = XI + Xj, i, j = 1,...,N,

are evaluated to determine the appropriate Ak k quantities. The
system is then excited with an input 1 2

N -ait
x(t) Z E e

i=l

Since N + (N(N - 1)/2] Akjk 2 quantities have been identified
above, the contributions of the associated poles can be sub-
tracted from the total response. The resultant response has
(3N/2) (N + 1) poles. This is a reduction of 25 percent or
(N/2) (N + 1) from the original second-order response obtained
with

N -ajt
x(t) E e

1=1 I

Although the order of reduction is not as great as that

achieved by applying the input x(t) = e- it N times, the identi-
fication measurement process need be repeated only twice.

The basics of these approaches to the identification
process are summarized in Table 1 for comparison purposes.

The best approach for the identification technique is
dependent on the system under test. The number of linear system
poles and the ratio of the maximum to minimum poles dictate the
complexity of the matrix inversion problem and, in turn, deter-
mine which of the above approaches will maximize the performance
of the identification technique. Therefore, selection of the
best approach must wait until the linear portion of the system
under test has been identified.
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Another potential approach to reducing the computa-
tional complexity is the frequency range separation technique of
Jain and Osman (Reference 2). This approach divides the fre-
quency extent of a given system into a set of frequency ranges,
e.g., low frequency region, middle to high frequency transition
region, and high frequency region. The system is excited by an
input signal that is approximately matched to the frequency
region of interest and the integration time is selected consist-
ent with this frequency range. The identified transfer function
is then a representation of the system transfer function in the
specified frequency region.

This approach assumes some a priori knowledge of the
poles of the system transfer function in order to permit fre-
quency region separation and determination of the number of poles
of the system transfer function in each region. Since, for the
nonlinear system identification technique of interest in this
study, the order and pole locations of the second-order response
are known, the above requirement is satisfied. The input func-
tion for the nonlinear system identification technique,

N -ait
x(t) = £ e

i=l

could be divided into the frequency regions of interest and ap-
plied separately for each frequency region. For example, if
N = 6, and Y2(s) is divided into three frequency ranges, then
the identification procedure is conducted as follows. Three
sets of measurements are taken, each with input

2 -ait
x(t) E e

i=1

where the ai are selected consistent with the frequency region
of interest. The three sets of measurements are then collec-
tively used to solve for the Aklk 2 quantities in the normal
manner.

The achievable reduction in computational complexity
using this approach is dependent on the characteristics of the
system under test. If the poles of Y2 (s) are distributed uni-
formly in frequency, then the number of poles of Y2 (s) in each
of three frequency regions is N'/3 and a one-third reduction
in the size of the matrices to be inverted has been realized.
It is necessary to point out that the price of this reduction
is the need to perform the identification procedure three times
instead of once.
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3. Numerical Integration Techniques

The results of the implementation feasibility portion
(Part I) of this study indicated that significant accuracy was
required of the numerical integration technique to achieve sat-
isfactory technique performance. The results indicated that the
primary source of inaccuracy in the integration was the quanti-
zation error introduced by the A/D converter. This will be the
case independent of the numerical integration technique used.
However, the results of Part I of the study also indicated that
the Simpson's rule of numerical integration technique introduced
numerical inaccuracy for higher-order systems. The reason for
this inaccuaracy was the fact that Simpson's rule reduces the
number of samples on each successive integration. Simpson's
rule of integration (Reference 2) is given by

b
f y(t) dt nb - a) y(0) + 4y(LT) + 2y(2AT) + 4y(3AT)a 6na

+ ... + 2y((2n - 2)AT) + 4y((2n - 1)AT)
+ y(2nLT) (41)

where

AT = (b - a)/2n = time between samples

2n = number of subintervals between data points.

Each integration using the Simpson's rule integration
technique results in a reduction of the number of samples that
can be used for the next integration. This is illustrated below.

Consider the output samples yl(O) , yl(T), yl(2T),...,
y 1 (2nT), where nT is the nth sample and T is the sampling inter-
val. The integral of yl(t),y2(t), as obtained using Simpson's
rule, is given by the samples

y 2 (O), y 2 (2T), y 2 (4T),...,y 2 (2nT).

It is noted that there are oDly nT samples of y 2 (t)
whereas there were 2nT samples of yl(t). As this output is suc-
cessively integrated, the time distance between samples increases
and the numerical accuracy of the integration technique decreases.
This will have an adverse effect on the performance of the ident-
ification technique, especially for higher-order systems.
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A way of alleviating this decreasing-number-of-samples
problem is to interpolate between samples output from Simpson's
rule of integration. For instance, in the above example, Simp-
son's rule produced an output at t = 0 and t - 2T, namely,
Y2(0) and y 2 (2T). Interpolating linearly between samples yields

Y. Y2(2T) + Y2 (0) (42)SY 2 (T) = 2

To determine the impact of this procedure on the performance of
the identification technique, this procedure was added to the
computer simulation of the identification technique. The com-
puter simulation of the identification technique was discussed
in detail in Part I of this final report (Reference 1). The sim-
ulation was run for two systems, a two-pole and a four-pole sys-
tem. The results are presented in Tables 2 and 3. The perform-
ance of the direct application of Simpson's rule is included for
comparison in Tables 2 and 3,

The results of Table 2 indicate that, for a two-pole
system, the interpolation procedure slightly degrades the per-
formance of the technique. The results of Table 3 indicate that,
for a four-pole system, the interpolation scheme offers slightly
improved performance for A/D converters with 20 bits or less of
resolution. This improvement will continue to be evident as sys-
tem order increases. These results suggest that the numerical
integration technique be modified to include this interpolation
method.

B. MATRIX INVERSION/SCALING TECHNIQUES

The primary computational problem of the nonlinear system
identification technique is the matrix inversion involved in
solving the residue equation.

The matrix to be inverted has entries given in general by r
P.(T) i Xm + 1 (T)

C (43)=j E 0 i + 1 -MCij Xj mil (A.)

where
T X (T -T)P i(T) e J x(T) dT (44)'

0

For the second-order system identification, x(t) = 6(t), a unit
impulse which reduces the matrix entries to
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A T, ~e J i m -

eC Tm(45

This expression can be rewritten as

( i"T)

jj 77.1(
But since

X T (XT)m-1
e = E (47)m=1 (m - 1)!

for Xi real, the Cij entries become
jm

C Mmi+I (m - 1)! (48)

or m
r i (X T)Cij=- (49)

ij 771m=i n

This expression serves to illustrate two basic problems with the
numerical inversion of the C matrix. First, the dynamic range
limitation of a digital computer limits the number of terms-which
can be used in a given summation. Also, it is clear that if two
Aj quantities used in the Cil expression are nearly equal, the
Cij terms become nearly equal since the m! quantity tends to re-
duce the difference between the Ci entries.

This numerical similarity between the Cij entries causes the
major problem incurred when attempting to invert the C matrix.
Several approaches to alleviating thisproblem have been postulated
(Ref. 2) and these provide some relief but do not eliminate the
problem. The dynamic range of the matrix entries provides the
major limitation and avoiding this problem requires intricate
programming which essentially corresponds to scaling quantities
after each operation. This is a long and involved process, and
the design of such a program is beyond the scope of the present
effort. However, it remains an important area to consider in
future efforts because it may help to eliminate a major limita-
tion of the application of the technique. The other techniques
discussed in Reference 2 have been used to invert matrices which
have the numerical structure of the C matrix and they offer some
relief to the existing problem. These techniques are reviewed
below.
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First, it should be noted that standard matrix inversion
techniques perform well when the C matrix is not nearly singular
and/or large enough that the dynamic range limitations of the
computer are exceeded. This was demonstrated in References 1
and 3 for two-, four- and eight-pole systems. The postulated
approaches should be applied only when the standard techniques
fail to perform satisfactorily.

The initial technique to aid in matrix inversion is called
"adaptive scaling" (Reference 2). This technique depends on
row and column scaling to alleviate the problem caused by matrix
entries which differ widely in magnitude. If it is desired to
invert a matrix C, the first step is to do a row and column
scaling on C, transforming it to

CO = PCQ (50)

where P and Q are diagonal scaling matrices. The entries of the
P and Q matrices can be chosen as follows. Consider the P
matrix. The Pii entry is computed as follows:

qualifying

entries

where the qualifying entries of each row are determined from
those Cij entries where

ABS (Cii) > aI * 1 0 -m (52)

where - max ABS (Cij) (largest entry of ith row)J

m is chosen by the user

ni = number of C1 j entries that exceed a * 10

threshold

The scaled C matrix entries are then given by

C
c c(53)
0 iJ =ii Q ii

The inverse matrix C-1 is found from

Co 0 1 Q C P- 1  (54)

This involves evaluating three matrices as opposed to one
but the two diagonal matrices are easily inverted.
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In addition to the row and column scaling techniques, there
are several perturbation methods proposed in RFference 2.
These involve forming the matrix A from

A - c D (55)

where CO is the scaled version of the original matrix and D is a
diagonal matrix whose entries can be taken as those of the diag-
onal of A. The constant e is chosen to be suitably small such
that C is invertible. (Selection of e is discussed in detail in
Reference 2.) Then, the inverse of C is given by

C -(A- cD)-
- A-1 + £ A-1 D A1  + 1 2 (C- 1 D) 2 C-1 + ... (56)

SC-I is found using A 1 , e and D, all of which are known. A-1 was
found using standard matrix inversion techniques.

A problem with this approach is that C 1 is not found in
closed form and then numerical accuracy becomes a question.

The techniques were exercised using the computer routine
provided in Reference 2. These routines were obtained from Mr.
Daniel Kenneally of Rome Air Development Center who receivedI them from their originator, Dr. V. X. Jain (Reference 2).

The computer routines were exercised for the second-order
response of a system with the linear transfer function given by

H2.8069192 x 105

s +0.011550998 (2w) x 106

2.7368441 x 108
s + 10.616986 (2n) x 10 6

The input to the system was

a t a t1 2x(t) (e + e ) U(t) (58)

where a, - 107, a 2 - 1.75 x 10 7 rad/sec. The resultant second
order response, Y2 (s), has poles at
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--0.011550998 (2w) X 106

X2  - -10.616986 (2w) x 106

X3  w 2 '1 u-0.023101996 (21T) x 106

14 = 2 12 - -21.233972 (2w) x 106

X5 X1 + X'2 =_--10.628037 (2w) x 106

" - )+1 " -1.603100429 (2w) x 10i6

X7 "1 +2 -12.20853543 (2w) X 106

X8 M aL2 + X`1 W -2.796762502 (21) x 106

X -W 2 + X2 w -13.4021975 (2w) x 106

X10 - 2al M -3.183098862 (2n) x 106

X11 - 2rA2 = -5.570423008 (2wT) x 106

X12 = -I + cL2 = -4.376760935 (2w) x 106 )
The C matrix entries are given by

e XT T

-j1 (m - 1)! Ai + 1 - 1,...,12

(60)

T was set to 600 x 10 9 second for this example.

The computer routines were exercised by varying the dimen-
sion of the C matrix from 8 to 12. In each case, the poles used
were XA, j - 1,...,matrix dimension. The results are given in
Table 4. The computer routines evaluate the accuracy of the in-
verse as follows. The auxiliary matrix Bo is formed as

B 0 - CC-1 - I (61)
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where C is the original matrix. The RMSE is defined as

N N
RMSE - E Z (B°0  2 (62)

i=l j=l ij

which is the sum of the squares of all the entries of B0 .
I0

Note that Bo = 0 if C is the exact inverse of C. Also in-
cluded in Table 4 is the numerically evaluated determinant of theI ~C matrix.

TABLE 4. MATRIX INVERSION RESULTS

C Matrix Root Mean Determinant
Dimension Squared Error of C Matrix

8 0.149 x 10-7 0.346 x 10-10

9 0.383 x 10-5 0.124 x 10-14

10 0.44 x 10-3 0.999 x 10- 1 7

11 0.21 0.222 x 10-22

12 1010 0

The results of Table 4 illustrate what happens as the matrix
dimension increases. The two poles, %2 and X5 , are nearly equal
which causes the C matrix to be nearly singular. This condition
becomes critical as the dimension increases above 11. The results
of Reference2 indicate that a similar matrix of dimension 12 was
inverted. It appears that these computer results were generated
on a computer whose dynamic range exceeds the 1038 to 10- 3 8 capa-
bility of the computer used in this analysis.

Further it should be noted from the work of Reference4 that
standard matrix inversion techniques were able to invert this
matrix when the dimension was 8 or less.

These techniques offer some potential relief from the matrix
inversion problem encountered when using the identification tech-
nique. The dynamic range of the computer used to invert the
matrix, however, remains the dominant limitation. A scaling of
individual operations is perhaps a way of alleviating this prob-
lem but this is an extensive process. It appears at this point
that the most viable way of increasing the applicability of the
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identification technique is to find methods of reducing the order
of the second order system response, Y2 (s). The primary focus of
this effort, therefore, has been to examine ways of reducing the
order of y 2 (s) without restricting application of the identifica- :4
tion technique. These techniques are evaluated in the following
sections. j
C. POLE APPROXIMATION APPROACH TO REDUCING ORDER OF Y2 (s)

The application of the identification technique to practical
systems increases in difficulty as the ratio of the highest break
frequency to the lowest break frequency of the linear system in-
creases. The reason for this is that the poles of the second-order
response include poles of the form

X£ + X k and Xk, L, k = 1, ... , N
where the Xi, i = 1, ... , N are poles of the linear portion of

the system.

If, for the system of interest,

4k + X k k

for some i, k combination, it becomes extremely difficult to

solve the residue equation

R C Y (63)

where C is a matrix with entries of the form

a T
eaJ i xm + I(T)

Ci =-' F- E (64)
a n=1 (aj)i+l1 (64

where a1 = At + Xk, X., etc.

If two of the a1 are approximately equal, the C matrix is nearly
singular and is extremely difficult to invert using standard
matrix inversion techniques.

To expand the applicability of the identification technique,
it is necessary to find a method of alleviating the computational
problem discussed above. The approach to be taken in this section
is to use the approximation

i + X = i if Xi + X• X J.
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The question then is to determine the impact of this approximation
on the identification procedure.

The first step is to derive the functional form of the second-
order response Y (s), for this approximation. The approximation
must be treated carefully to insure the correct expression for
Y2 (s) is obtained. This is demonstrated below.

Assume that we have a system output given by

A1  A2
Y(s) = + (65)s + X1 s+k

The corresponding time function is given by
-X t -x2ty(t)= A1e + A+2 e (66)

If X + e, then

-et i- •1t

y(t) = (A 1 + A2 e-) e (67)

and for e0,

y(t) (A 1 + A2 ) e (68)

and
(A1 + A2 )

Y(S) s (69)
,,s +* I

Therefore, Y(s) is approximated by a single-pole system.

However, assume that the system output is of the form

B B

B 2-- 1 1 -2
(S+ +X s+) (s + 1) (a + 2) + •1 s + A2  (70)

The corresponding time response is given by

B -*lt -X 2 t
y'(t) = 2 X (e - e ) (71)

I
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If X2 X )1 + c, then, as c-O

Y(s) B 2 (72)
(s +

and

y'(t) = Bt e (73)

In this case, Y(s) is approximated by a double-pole system.

The approximation for Xi + X = in Y2 (s) must be made be-
fore the expression for Y2 (s) is expanded into partial fractions.
The second-order response, Y2 (sI, s 2 ), is given by

M N L L
= (si k 2 ;l i1 j-- AY2(l2 k11k2 k1k2

(rls + s 2 -2 ak

s+ S2 a ak )(s2  ak )(s1 -ak ](l )( 2  )
1(2 1 k 2 2 k2 1 k2

(74)

Expansion and simplification of Y2 (Sl, 2 yields

M N L L Ak1k2
Y2 (S 1 ,S 2 ) = k(i + ak 12 2

k 1 =l k2 =1 i=1 J (i + 2)(aj + ak 2

r .1+ s2 - 2akl][ .1
s1 + s -a - a_ I -((s ak S - ak2

1 1

(s1 - a k2)(s2 + ai ) (s1 + ai)(s2 - a k2)

+ ( + )] (75)
(1 + (s2 + a3
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Association of variables yields

M N L L Akk r 2 s .k2Y2(s) r z z I ( + ak)(a+ a + a(akall k 2 1 ini J (= a ak -k [k 2k1 =2 2 1 2

Ss- k s + (a) s + (a - a2) s + (a, +

(76)

Equation (76) involves products of transforms. Specifically,

A

M N L L k k 1
Y(2(s) I (a +ak (I + a s - (a + a)

k 1 =1 k 2= 1 i=i Jj 1 k 2  k k2 k 1 k2

s - 2ak s - 2ak2
(a- + a J + (a + 1 a (ai[s (ak 1 ak2 ) Is + (a -k 1 + 2 )' Is + i k 2

S- 2ak2

(a - 1 + ak]s + (a + (77)

Since ai 0 ak for any i, k, and a + a ak + ak for any
k1 1 2

* i,J, kI and k 2 , Y2 (s) involves poles which are of first order for
the Xi + Xj = XA situation.

Therefore, the approximation to be made is¶ A1 + A2 = A2 for X2 >>X 1  (78)

in the expression for Y (s). Y (s) then consists of simple-order
poles. The functional ýorm of ?2(s) remains the same under the
approximation.

tj The next problem to be addressed is the generation of equa-

tions to solve for the unknown Ak k quantities. The general

approach is to:
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(1) Identify the A.. i 1 ... , N from residues of poles
at s = -2Xi

(2) Identify the Aim,Z ý m, Z,m = 1, ... , N from residues
of poles at s =-( + Xm).

(3) Identify the remaining Akjk 2 from residues of poles
s - -ai - Xk 2 , i,k 2 = 1, ... , N.

The approximation implies that there are some Aim, Z 0 m, 9,
m = 1 ... , N that cannot be identified from the poles X£ + Xm
since X£ + Xm = Xm for some £,m combination, This requires the
identification technique to be modified to allow generation of
the appropriate equations to solve for the unknown Aklk 2 . The
derivation of a new technique to generate equations is addressed
below. In general, there are (3N /2) + (N/2) nonzero Aklk2 to
be determined. The poles of Y2 (s) are given by

s ak + ak kI = 1, ... , M; k 2 = 1, ... IN

S= -a + a2 1 , L; k = 1 .... N

s = -a - j, i,j = 1, .... L. (79)

First, consider poles of the form s = ak + a = 2X

Z = 1, ... , N. The terms in Y2 (s) corresponding to the pole at
2X9 are given by

L L 1

Y2 U(s) Z Z AR, ( j9 + 1 1) s 2X (80)
i=i. J= (a x . Gi + X 80

Let the residue of the pole at 2X£, as obtained by the pencil-of-
functions method, be denoted by $Zt. It follows that

AL + 1 + 9 1 .... , N. (81)Z£ k t£ Z i=aJ J= I CL )(A i + X Z

This procedure results in identification of N of the coefficients,
and is unaffected by the approximation.
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The general procedure at this point is to consider the poles
of the form s - akj + ajký X +Xm where Z -4 m and L,m 1,...,N.
Since Aim - _Am for Z,m N, the terms in Y2 (s) corresponding to
the pole at X + Xm are given by

L L
Y2Um(s) 1 £ Am

irni j=nl
j+ a X+ 2X

[(ctj + )9 ai + +2X j + X + m)

+I +a. +2Am 1

(a i + Xm)(ai + Xm)(ai + ai + X + Xm) S X- X m. (82)

Let the residue of the pole at XX + Xm, as calculated from the
pencil-of-functions method, be denoted by 89m. It follows that

L ai + a 2X
ALm = 8m l I E(a + X )(ai + X )(ai + aj + X + X

+a i + aJ + 2Xm -

+(aj + X m)(ci + X)(ai + ] )(a + m + 37 + m) ,m =

z 0 m,L < m
(83)

This procedure results in identification of N(N - 1)/2 of the co-
efficients provided Xt + Xm ý Xm for any m,Z = 1,..., N.

When Xt + Xm t- Xm is the situation, specific Atm, L,m
= 1,.... ,N, 9 m, cannot be identified in this fashion.

Assume that there are K combinations of Z,m, Z,m = 1,...,N
such that X. + X ZX. There remain N2 + K unknown Akjk 2 quanti-
ties to be identifiel. If the input consists of N decaying expo-
nentials, the residues of the poles s = -ai - , i,j = 1,...,N
can be used to identify N2 - 2K unknown Ak 1k2 q~antities. Also

identified are K quantities which consist of sums of unknown
A klk quantities. This is illustrated in the following identifica-

tion technique example.
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Consider a nonlinear system whose lineur impulse response is
given by:

3 lit
hI (t) - Z Ri e t > 0 (84)

i-i

Re {X < 0.

The problem is to completely specify the paratneters of h2 (tl,t 2 )
where

aktl + ak 2t
h 2(tlt2) =1 Z 1Akk2 e U(t2 -t 1 )

k=l k2 = 1 2

M N aklt 2  a ta 1
+ A eA1k

+ xk 1k2 e U(t 1  - t 2 ). (85)

k 1 1 2

The parameters are M, N, a, a and Ak

The number of residues, Aklk2, that must be determined is
given by

W = N M - N (N 2 27. (86)

We know from previous analysis that

s = N (N - 1)2 = 3(2)2 = 12 (87)

elements of the set (aki + ak2) have zero residues. The elements
of {akl + ak 2 ) = {aklk 2 T whici have zero residues have the form

(a + X - Xk, i f k; j ý k. Identifying those elements of
akik2l that have this form yields the following zero value

Akl 2 quantities

1I
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6A1 - 0

A8 1 - 0

A6 2  0 (88)

A7 2  0

A8 2  0

A9 2  0

A5 3  0

A7 3 =0

A9 3 =0

A1 0 ,3

We can group all the remaining elements of fa•jk2 ) to specify all
the distinct elements of fa~ 1k21. In this group below we include
the (kl,k 2 ) pairs that produce the given sum akj + ak 2 ,

ak +ak2 (k 1 ,k 2 )

x (4,1) (5,2) (6,3)

X2 (7,1) (4,2) (8,3) (3,1) (1,3) (2,1) (1,2)

"x 3(9,1) (10,2) (4,3) (2,3) (3,2)

2Xi (1,I)

2X (2,2) (89)

2X3  (3,3)

wh,.re it has been assumed that

1¾ +2 2
1 + 3 =3

2 3 2
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We now demonstrate how the equations relating to Akik are ob-
tained for the set of poles at (akl + Rk2 ). Assume that the
method of system identification is applied and all appropriate
measurements are made. This means that a residue value is avail-
able for each distinct element in the set (akl + ak 2 ).

We now consider the situation that arises for L = 3. The result-
ant expression for Y2 (s) is given by

10 3 3 3
Y2 (s) E E k Z Aklk

k 1=1 k 2 =l i=l j=1 12

+ ak)(aa + a+ 2ak 1  k~

(a + a.)(a + ak )(ac + a. + a + a

k_1___k_1___ 1 ak ][ +2 ~

1 (a + ) -+ + )(a k + ak1 - k

(a + ak)(aj+ ak) s +-

(ai + aj + 2 ak)1

+ (aj + ) + a )(a 1 + 4- + aX + ) s + a +

The quantities Ak 1 kj, for ki = k 2 . kl,k 2  1,... ,N are
identified from the poes s = - 2 Xkl, k, = 1,... ,N. This identi-
fies All, A2 2 , A3 3 .

By considering each set of poles separately, equation (90)

can be expressed as three terms

10 3 3 3
Y2(S)= E Z E E A

2 1 kk=1 k 2 =1 i=l j=i kIk2

a i +-a + 2a 1
(( '(a + a k1 )(aI + ak )(ai + ai j + akl + ak2 s (ak + ak 2
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10 32
k k -Akj

k1 '1 k 2 - k1 2  1. k+ 1  + k1 + 2

2(al + 02 2ak)

£ ÷ 2 " )(%I + ak )(a + 2 +ak + 0k-)

+ 2

S"k 2  k k Ir.• 2( + + kl 3 + St2a ,•'

11 1
)(a 1 + +a +a 22)

; + "''a (% + a13 + k x + ak ak21 k (1 1'

S�2 2
) + aa +
2(cL 2 3 + ak 1 3)kI+k

2( ak( 2 + a3k (2a 3k +a

.111

3 k- (ak 2 k ak2)] (91)

10 3 3 3
Y2  (s) E E I E Ak
4 k11 k2 m1 i- J- i

r + Ct + 2a~ ]
(aj + ak ) + ak )(aj + + ak2+a2 k2 21 j k
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10 3 2
E E A kk +Ic a. + a

k 1 1 k 2  1 2 <1i ak2 )1 20i 20 1  k k

1 a 2  +k 2  122(ma+ M2 + akr (a -+ a) + Q + a

3 k2 A2 "2(aj (ki 22

~ 21 +- (-i + )(k2  + 1akl)

+ 2 1 (k22)

•(l + aI- ( )ak

Expand, ng equation (93) yields

10 3 3 3 1

ak2 )2 1 k

Y E Akk 4 -
(8 k€ k'(a + a + 82243k 1 1 k2-1 11 JL-1 1ak)2~ akJ )( 1i

1

(a ak+ ak a - ak7

1 ) 2

Exadn qain(93 )' * yields

2 kI 1k 3 k2 2'
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+ 2
Sak)(a2 + ak k

22 _

+ ( k )((12 + ak 2) J 'L2%2

+ -•+ )(.+-' ] +•(t3+akI a(L k 2 -k2

1

l[ S k)c2+ak2)] 11 2- 2

+1
+ 2 + )(a3 + a s + a2 a

( ak + ak2
3 k 3 + ak )(aa3 +a ] + (x 3 &ak

We now focus attention on equation (94) which can be simplified
to obtain

10 3 1 1
y (s) -- 2 E E A1 1

2+3 k1 1 k 2 1 a + kk

+ 2 +a a [ai + I 2)1 1 1_ _ _

(a2 + akI) 1 + ak] a2 + ak a3 ) k
25
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+a 2 ' [(0 3 +a ('I+ a2 a 2 + k2
I 2  a I I

S+) 1 (95

The previous analysis'has shown that the unknowns involved in
equation (95) are

A4 1, A42, A43, A52, A 63 , A 71 A83, A91,A 10 2, A21, A31, A32

If we consider the pole at s -- a1 + a, and follow the pro-
cedure detailed previously, we obtain the equation from (95)

i~ +, +_, ,,___'
4 '+a3 (+ a a 2L a, -3 a,[1 4 12

+ A += ()

71 a 9 a + a I a + a C + a 3 a +'

1 7 1  1a a a 2+ 1 a3+a 1

31 01 +a3(31, aý+ 1 it2+a, F )]

- J

+ A + + 1s+j

91 al + a ( ii i i1i i + a.)]+1 (I6)
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which reduces to

A 41 A 21+ + + +
C9 1 + a 4 a 1 + a 2 01 1 + R 7 a 1 + a 3 CL I + a 9

(97)

Similarly the pole at s a 2 + a 1 yields the equation

'A 1 + A4 (CL + a 21 [ a +1 a + 4712 4 2 2

r 1+ A + A (98)31 [Eý aj 91 U a 2 + a 9, r2

Similarly the pole at s -Q + a, yields the equation3

A 1 + A + A 141 [(a + a 21 71 (a + a3 4) 3 7)]

A 1 -] + Ag, (99)31[a + a a + a3 3 3 9

From the previous analysis

a 0 a4 2 2

a 7 X 2 X1 a 3 3

a 9 3 X1 (100)

From the constraints on the analysis, it is known that
a 0 a

4 7 ý a

and that our approximation requires

a 9 a 31 a 7 a 2
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Equation (100) reduces equations (97) and (99) in matrix form, to

1 1 1
a 1 + a 7  a1 + a. A41

1 1 1 -,
* 2 C 2 + a 7  a2 + a9  A7 1 +A 2 1  2

1 1 1
* 3 3 + a7  3 + a 9  A9 1 + A3 1  53(101)

Previous analysis (Reference 3) has shown that this set of
equations is linearly independent and therefore can be solved for

A4 1 , (A 7 1 + A2 1 ) and (A 9 1 + A3 1 )

If this process is continued by considering the pole at s - -_
+ a2 , an equation similar to equation (97) is obtained, namely
with the a' quantity replaced by 0.2. Similarly, this occurs for
the equations (98) and (99). Under these conditions, equation
(101) becomes

1 1 1 1A
1 a+a 5  a 1 + a a + a3 42 4

1 1 +1 +1 3
•2 02 a5 02 al 02 a3 A5 AI2

1 1 1 1 -203 01 +a a + a a +a it 5 1,3 5 3 1 3 1a 3 a 3 + a 5 a 3 + a 1 a3 + al1 A 12 (5

A3 2
(102)

If L = 4 in this case the above set of equations would be linear-
ly independent and solvable for

A4 2 , A1 2 , A3 2 , and (A5 2 + A1 0 , 2 )

Knowing A1 2 (also A2 1 ) permits identification of A7 1 from previous
analysis.
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By considering the pole locations s - + a, i 1- , 2, 3.
the following matrix equation, similar to (10 and (102) is ob-
tained:

a 1 Oa1 + a6 a1 + a 8  a1 + a 3  A4 3  7
S1 1 1 1A

a a + a a +a a 2 + a3  A6 3  = 8

1 1 1 1 -

L a 3  L3 + a6 a3 + a 8 a 3 + a 3  A83  (9
A A13 (103)

If L = 4 in this case, these equations are linearly independent

and solvable for

A4 3 , A6 3, A8 3 , A13

A problem may arise if ai + a 3  ai - a 3 (a 6  -a3) for all i.
If this does not occur, then all the Aklk 2 quantities have been
identified except for A5 2 , A1 0 ,2 . The sum A52 + A10,2
has been identified. However, A5 2 can be found from the residue
of the pole at s = -X1 . This portion of the response is given by
equation (91). The only unknown in this equation is A5.
Once A5 2 is known, A1 0 , 2 is also known. Therefore all" the unknown
Aklk 2 quantities have been identified.

The problem at this point is to demonstrate that this can be
achieved for all N.

We now attempt to develop a technique which works in general
for all values of N. For convenience we order the Xi,
i - 1,...,N,of the linear impulse response such that

< < X3  N <¼N

The identification technique will yield a set of equations at pole
s -- j + XI given by

N+K' Akl1E s =D1  (104)
S=l akls
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where D1 is the residue of pole s - "a.1 + Xl with all known
quantities subtracted out. The index 1.s corresponds to those
values of kI for which Aklk 2 is unknown.

The N + K' akls quantities are given by

ak = 0

2 1

= XN - (0

X )j K' of these values, (105)

j = N, N - 1,...,N - K' + 1.

The entries correspond to those poles that arise because
of the pole approximation. For example, if X2 +X X,, then

I ak in the above set.

Similarly for a2, we obtaina

N+K " 2A Is-E + akl D2  (106)
,s--i ( +a

whcre

K" < K'

and

a k =0

=k1  N - x2
3 2

N 2
= j }K" of these values, J= N, N - 1,....N - K" - 1.
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Continuing this process yields

N+KN AkN (107)

Z +ais DN )-s

where
K• N KS N -1 <-" <- K" <_ K'

and

1 N

X2  XN

N--

KN

X } j N, N 1, N K + 1

Solution of these equations will result in identification of
a number of the Ak k quantities. However several Akk 2 coeffi-
cients will combini fogether, and only a sum of coefficients is
obtained. This is illustrated below.

Assume that K' = 1. This implies that

Xi + XN ý XN and XI + Xi " Xi for i 1, .... N - 1.

The equations derived are

N+I Ak sl1

1j kls (108)
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where

ak -

- A2 -

AN_1 - X1

-AN_ -I AN

If L - N, then a set of linear independent equations is gener-
ated that results in solution for all the Akl quantities except
for a pair given by

AN + A
2 N1

For k2  2,

N Ak 2-a + a D 2 (109)

where

a =0
k1 8

" AN- A2

These equations are linearly independent and can be solved
directly for Aks 2. Similarly a solution is obtained for the

quantities Ak 39 , ... AklsN-l.

For k 2 = N, the equations are

N+1 Ak sN
s E +a = DN (110)s-1al a k18s
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I. where

ak = 0
is

= 1 N -N

= N-1 - N
N

- XNl

If L = N + 1, then a set of N + 1 equations in N + 1 unknown
is generated that is linearly independent and solvable for the
AklsN.

The quantity AIN is identified from the equation involving

A k sN. This results i.n identification of all the unknown Ak1k2

in h2 (tlt 2 ).

Suppose next that K' = 2, (XN + XI XN' XN-1 + I X N-1).
The resultant equations areIA

N+2 Ak is 1z ) =D 1 (111)

where

kis

= 2 1

= 3 1

X kN-1 XI - AN-

X N -~1 N

Solution of these equations leads to identification of N - 4
Ak lk 2 quantities and the summations
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- - ___._-__-_--_,___ • m-J

AN-l, + AN2 -N+2,_

ANI + AN2 -2_N+3,1

For k = 2, the equations are
N Ak22 (112)

z + = D2
Sal (a + a kls

These are solved directly for the Akl2. Similarly for
k2 = 31..., N. This implies that A1,N and Al N-i are identified
provided N > 2. Using the symmetry, Aklk2 - kk2kl, kl,k2" 1 .... N,

yields solution for all the Aklk2 .

"Assume that K' - 2 but, in this case, the poles are such that
AN + N 1 t XN and XN + X2 X N. The resultant equations are

N+2 k Is5ri l + DI (113)
S~S-al akls

where

ak =l 0

2 -1

XN- Xi % 1N

This yields solution of N - 2 Aklsl quantities and the summa-
tion

AN1,1 + AN2 -N+3,1

For k2 2, the equations become

N+2 AkIs2
zS- (a + Dk s
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where

Ak 0ks 0
is

3I 2

N- 2 XN

Solution of these equations yields all of the unknown Aklk 2
except for the summation

AN2 + AN2 _N+4,2

For k2 = N, the equation becomes
Aks

N- 1 ko
a + Akls (115)

s=1 aj 4 A

where I'
Ak = 0

is
X1- XN = XN

X2 "N -N

-N-1 XN

The solution of these equations identifies all Ak quanti-
ties except for the summation, 1sN

A2NN + A3N_1,N

This yields solution for AN2 which implies that the only unknown
Ak k2 at this point are

A2 N,N and A3N_1,N
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An equation involving A2N and A3N-IN can be obtained from
the residue of the pole at s = -20l. This equation has the form

A 2NN A 3N-1,NA3N-N=Hi (116)

(al + XN)(2a1 + ) (•1 + XN) (2 a, + A2) 1

where H -residue at pole at s -2a This equation can be
rewrittan as

A2NN + A3NHN H (117)

2 + 2a + 1

The two equations involving A2NN and A3N_1,N can be repre-
sented in matrix form as

11A2NN DN'

2 (UI)

1 1
2al+ X1  2ctl + •2 A3N-I,1N IH1 '

(B] A] [z] (119)

For linear independence

det B ý 0 (120)

For det B = 0, it is required that

1 1 1 (121)
2a1 + X2  

2 al + 71

or X= X1 , which is not permitted by assumption.

Therefore, it is possible to solve for all the Ak k quantities

even if K'- Z. 12

Further analysis has not led to a method of demonstrating
that the Aklk 2 coefficients can be identified for an arbitrary

number of pole pair approximations (Xi + XJ = XJ) One of the
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* reasons for this is illustrated in the analysis for two pole pair
approximations (K' = Z). There are many combinations of potentialpole paires to achieve K' =f 2. As"K increases, these combina-

tions increase significantly in number, and it is necessary to
show that a set of linearly independent equations can be found.
This process rapidly becomes complex to show, in general, that
these equations can be generated.I: At this point, it should be noted that significantly more

r 'equations are generated than are used in the identification pro-
cess. It is possible that some of these equations can be used to
form a linearly independent set of equations to solve for the
unknown Akik2. The problem is that a method has not been foundfor dee6nstrating that a linear independent set of equations in-volving the unknown Aklk, quantities can always be obtained using

the identification techn que. The algebraic nature of the equa-
tions has, to date, prevented linear independence of any set of
equations other than those generated from poles at s = -ai + Xk2 ,
i " 1,...,L; k2 =1,...,N froim being proved in general.

The above analysis implies that the pole approximation

(Xi + X, -_ X ) is a reasonable approach to alleviating the nu-
merical problem associated with poles of this type. For one- or
two-pole pairs, it has been shown that the Aklk 2 quantities can
be identified. For more than two poles, each system identifica-
tion problem must be considered individually. Although a general
identification technique is not defined here, it is probable that
there will be a sufficient number of linear independent equations
to solve for all the Aklk2 quantities. Each system identifica-
tion problem must t.) considered individually to find a sufficient
number of linearly independent equations.

D. DOMINANT POLE CONCEPT

As noted previously, the identification technique becomes
signiftcantly computationally complex as the number of poles of
the linear system increases. The second-order impulse response
of a weakly nonlinear system is given by

M N k aktl + ak2 t 2
h2(tlpt2 E Ak e U(t2 t)

k2l kl 1k2

ak t1 + ak t 2
+ Z A 2 e U(t- t 2 ) (122)

k1 =1 k2 I kk 1 2

1 2
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For a given system, it is possible that this impulse response
is dominated by a limited number of Aklk2 terms. This implies
that h2 (tlt 2 ) can be represented by fewer terms than are given
in equation (122). This reduces the number of coefficients that
must be identified and will ease the computational problem
associated with the identification technique. This section in-
vestigates how this approach may be implemented to reduce the
order of the second-order impulse response.

The second-order system response, Y2(s), has been shown to
be given by equation (19). The primary focus on reducing the
order of the identification problem must be on reducing the order
of Y2 (s). This is because the order of the residue equation
R - C-1 Y is directly determined by the order of Y2(s).

All of the poles of Y2 (s) do not contribute equally to the
system output, y2 (t). It is possible that some poles of Y2(s)
contribute negligibly to the output. If these poles can be
identified, then the second-order zesponje, Y2 (s), can be
approximated by aresponse Yý(s), where Y2 (s) does not contain the
poles of Y2 (s) that negligibly impact the output.

The basic problem with identifying which poles of Y2 (s) have
a negligible impact on the output is that this requires knowl-
edge of the Aklk2 quantities that we are trying to identify.
This implies that the poles of Y2 (s) that ha-.• a minor impact on
the system output must be identified by other than analytical
means. However, it is unlikeLy that this can be accomplished.

A potential method of reducing the order of Y2 (s) by identi-
fying the negligible poles is presented here. The number of
poles and the location of each pole of Y2 (s) are known from
identification of the linear transfer function, Hl(s). The pro-
posed technique is as follows., First, the nonlinear system is
excited by the input x(t) - e- t. The resultant output, Y2(s),
contains NQN + 5)/2] + 1 poles. The normal procedure is to
integrate the input and output N' times and solve the result-

ant equations for the system residues. The suggested procedure
Js to assume that the number of significant poles of Y2 (s) is
N" < N'. The input and output responses are integrated N" times,
the appropriate inner products are formed and the resultant equa-
tion for the pole locations is solved. If these pole locations
agree with N" of the predicted pole locations, it can be assumed
that an N" pole approximation of Y2 (s) is a valid representation.
If the pole locations do not agree, then N" is increased by 1
and the above process is repeated. This is continued until there
is good correlati.on between the identified poles and those pre-
dicted from H1 (s).
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In order to demonstrate that such a technique is feasible,
consider the follcwing example. Suppose we have a system with
three poles, where

SH(s) - 2.8069192 x 105
H s +0.011550998(2w)(10 

)

2.7368441 x 108
6!• + sS'~~~s-1.52)1)10.6161986(2n)(106)3_ _.. 13l3 (123)

s-1O.6161986(w(10O6

The residue, R3 , will be left undefined for the moment. This
transfer function was inserted into the computer simulation of
the identification technique. (This simulation was described in
detail in Reference 1.)

The simulation assumed that the system of interest was a two-
pole Pystem. The residue value, R3, was varied in amplitude to
determine under what conditions H(s) could be accurately repre-
sented by a two-pole system.

The results of the simulation are given in Table 5. These
results indicate that for R3 . 104, identification technique
identifies the other poles and res'dues of H(s) with less than
0.25 percent error. For these cases, R3/2.8069192 x 10 5 < 0.035
and R3 /2.7368441 x 10 8 < 3.6 x 10-5, which indicates that the
poles of H(s) at s = -0 11550998(2w) x 106 and
s - -10.616986(2r) x 106 dominate the transfer function. As the
residue R approaches and exceeds the magnitude of the residue
of the pole at 3 = -0.01150998(21)(10 6 ), the identification tech-
nique degrades in performance as it attempts to identify the two-
pole model of H(s). The reason for this is that, as R3 increases,
H(s) is not dominated by the two poles; therefore, the proposed
technique is no Longer a valid approach to identifying H(s).

Another approach to reducing the order of Y2 (s) and subse-
quently easing the computational problem is to apply a dominant
pole concept to the linear portion of the system. The linear
transfer function of the system of interest is assumed to be of
the form

N R
Hs(s) -•i

It is possible that Hl(s) is dominated by several of the N poles.
For example, suppose
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Hi(s) s +s 1 s-.2

i~ ~~~~~~ + RR 2 s-X)( 21 R2 2 1-
R 1R + R L2 1)1

-(R1 + R )[s X) I2  I

R1 +R 2  1 X (aorif

I1  2 ~2  1-(15

i , then Hl(s) could be represented by

CR + RL 2 1

11Hi~s) = s-

1 2

L or
R(R 1 + R2 )

Ss - )t1
R (126)

t respectively. In these cases, the two-pole linear transfer func-

tion Hl(s) can be represented by a single-pole transfer function.

S~This is significant because the order of Y2(s) varies approxi-
S~mately with N 2, so that any reduction in N achieves an even
i greater reduction in the number of poles of Y2 (u).

The impact of this approximation on H2(sl,s2) or h2(tl,t2)
is presented below. Consider an exact system representation given

S~by
12 Ri

His) - -X2or H (s) (R 1 + R2)

t H1(s) s by Ai

L 6

T h i s i s s i g n in be t e o r o f v a r i e s I p oi -



H

The resultant h 2 (tl,t 2 ) is given by

h 2 (t1 t2 ) -[Ail eXl(tl + t 2 ) + A12 eX
1 tI + X2 t 2

X2 tl + N1 t 2  N2 (tl + t 2 )+ A2 1 e +.A 2 2 e

"x1 t X+t e 2 +A e •2 2

A3 1  32

-2)tl 2 2
+ A4 2 e

+ A e 2 - A)t 1 +1
51 t2J U(t 2 - t 1 )

x (tl + t 2) x 1 t 2 + x 2 tl1
+ [A11 el1 + A1 2 e

x2 t 2 + N1 t1  x2 (t1 + t 2 )+A2 1 e + A2 2 e

AI ti + 2 t1
+A 3 1 e + A3 2 e

+ A42 e( - X2 )t 2 + A2 t 1

(A2 - Al)t 2 + A1 t1 1
+A5 1 e J U(t 1 - t 2) (128)

if
R1 ý2 +R 2 x~=

+R2 2

then R

H1 (s) s - 1A

The resultant h (t 1 9 t 2 ) is given by

2)i

62

. .I-, , •' • " • •l• r, ••-4



F
I

h [Ai el(tl + t2) +A, e•I t2]
h2 (tl,t 2 ) - All e + A2 1 e U(t 2 - tl)

e+ I e + A2 1 e U(tl - t 2 ) (129)

The approximate expression for h2 (tl,t 2 ) implies that
tA1 1 = A 1 1

A A

A2 1  A 31

12 = A2 1 =A 2 2 =A 3 2 =A 4 2 =A 5 1 =0 (130)

for h'(tit~21'2 = h 2 (tlt 2 ).

The approximate expression for h2(tl,t 2 ) retains only two of
the original Ak k coefficients, meaning that the approximation
(R1 X2 + R2 Xl)'(R1 + H2) = X2 implies that six of the Aklk2 co-
efficients are zero. In order to see how this approximation
comes about, we consider the following example, which is a
simple single nonlinearity (no-memory) nonlinear system, as
shown in Figure 4.

t8

i(S) IR nZ Kn vn

Figure 4. Simple Single Nonlinearity (no-memory) Nonlinear System

It has been shown (Reference 3) that the second-order impulse
response of this system has the form
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N N N RRR
-K 2 (14-1 -1 j~l£I-• jE

e -+X 2  X X

h 2 (t 1,t 2 ) = [ 2 >

_K N N N iR Ri ) t22
-K2  E :£j (r RRxx

[e Xit I + (X 1 X i )t 2 "i 1 Xjt 2]

t 2 < t 1

(131)

where it has been assumed that the linear impulse response of this
system is

N X t
h1 (t) = E Ri e t > 0 (132)

i=1

For purposes of example, it is assumed that N - 2 and that

XI t •X2 t
h1 (t) = R1 e + R 2 e (133)

If h2(tl,t 2 ) is expanded for N = 2 and put in the standard func-
tional form given by

5 2 a k 1 t1 + a tkI1 k2 Ut2  )
h 2 (tl,t 2 ) = E A klk e U(t2 - tl)

k= k2=1 12
a t +a t2

5 2 ak 2  ak 12
+ Z E A e U(t 1 - t

k 1 =1 k2=1 k 1 k 2  2(134)

where the Ak k quantities are defined as follows:
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A1 1 = K2 R1
2 [ x1 + 2  2X]

1 2 = 2 1 = - K2 R 1R 2 r I-

I( 2  [_R2 R
A2 2  - + x 2X2

-J~ 1Z 1 2 1 A 2 ]

A3 1 = K2 R1
2 [R 1  L2 ]

31 2 1 x1  x 2

A32= 2R2  [R1 + R2 ]1
A 4= 0

4 R2  R

A4 2 = K2 RIR2  xl - 2X2 ý2

A5 1  K 2R1 R2  2 2X1

A5 2 = 0 (135)

The dominant pole assumption was that

R1 X 2 + R2  1 (136)

R1 + R2  2

This requires that

R1 >> R2 and R1 x2 >> R2 x

If this assumption is applied to the resultant Aklk2 quantities,
we obtain
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A 21

K2  K13Allz -- -~

A1 2 = A2 1 = - K2 R R 2 •2 i]3
K2 R2

A2 2in X1

31 =

21

K2 R2
2 R1A32= 1

A4 1 = 0

A4 2  K2 R 1 R2  - 2x 2  x2J

A K 2R12R2A5 1  21=511

A52 =0 (137)

For R1 >> R2 , we have

Al >> A2 2

A1 1 >> A1 2

A1 1 >> A3 2

A11 >> A4 2

A1 1 >> A5 1

A3 1 >> A2 2

A3 1 >> A1 2

A3 1 > A3 2

A3 1 > A4 2

A3 1 > A5 1  (138)
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which reduces the second-order impulse response to:

(tif KI3 eX1 tl + X'1 t2

h 2 (tl~t 2 ) K2  - Ult-- t

x '2
xl U(t t)

+ K2  RL 3 eX1 t 2 + X1 t 1

R3 X- X1 te (139)
S eU(t 2 - t 1 )
xi

If hl(t) is approximated by

xI t (140)
hl(t) =R 1 e

using the dominant pole concept, the resultant h 2 (tl,t 2) is given

by

K RI 3 [ X1 t 2  X1 ti + x2 t2 U(t t

h2 (t 1 ,t 2 = e -e 12 ~Ut

K R 3 r x 1 t x t2 + X2 t U(t t)
K2 R1-[ 1 e 2~t (141)

or + +1O2 
+ A1 e• 1• 21 t2t' 

tl

h 2 (tI,t 2 ) 2 All e + A2 1 e 1  U(t 2 -

xi e 2 + t +A exi e 1 t2l
+ A21 e U(tI - t 2 )1l (142)

where K2 1R3

All = - x

K2 113 (143)

A21 X-
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It is noted that, given the dominant pole assumption,

h 2 (tl't 2 ) zh 2 (tlt 2  (144)

This analysis demonstrates how the approximation in h1 (t)
propagates to h2(tl1 t2 ). It supports the approach using the
dominant pole approximation on the linear transfer function.

It is noted from the analysis that the dominant pole is pres-
ent because H1 (s) has a pole and zero which tend to cancel each
other in the s = a + jcw domain. This illustrates why this approach
cannot be used on Y2(s) since the unknown Ak 1k2 quantities pre-
vent the zeros Of Y2(s) from teing known. Tis prohibits associ-
ation of pole-zero pairs for possible cancellation and subse-

quent reduction in the order Of Y2(s).

E. RESTRICTED FREQUENCY RtANGE ('0tCE1PTS

There are se%-era' mfethods cf rca~Pucing the order of the second-
order response w.hiciwe~ht.~:~sf' a: re~stricted frequency range
approaches. These approatches bu-i. ymodify the input or the
system output t.,- evse trc.( ident'i .L:Atioi~ problem.

The primary re!:.tr-ictefl frequetiic" 3ppr-)ach is to use a filter
on the output o!~ the ~systamr under tes':, The purpose of the fil-
ter is tc Feleo-t~rely the yremoutput to a particular
frequency rang(.-. Cor~sv:'r th~e :_xamplc :2hown below:

.FNf.jNLjNEAPF(s

FiL;F ml

For second-orceer impu-sr-± ct.ponst; co~is- . 'ýat ions, the equivalent
system is as Eftowf be.low:

Ii~~~ ~ LL'yV4(l'Y(s) F (S)
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The system output becomes Y2 (s) Fl(s). Fl(s) must be band-
limited with respect to Y2 (s). The number of poles of Y2 (s) Fl(s)
depends on the number of poles of Y2 (s) within the bandwidth of
F (s) and the number of poles of F 1,s). For this technique to

olfer any advantage, the number of poles of Y2 (s) Fl(s) must be
less than were present before filtering.

The poles of Y2 (s) are of the general form

9.. m . .

ka + X.m ,m = 1,...,N

+ X. ij = 1...,N

+ ji,j 1...,N

The a. are selected by the identification technique user. Proper
selechion of the ai can cause the poles of Y2(s) to bunch up in
certain frequency ranges.

Consider, for example, a two-pole system with poles X1 and X2

(02 > XI). The poles of Y2 (s) are

X -2a1 1

X 2 -(a 1 + a 2 )

k + X -2a
1 2 2

-a + X 2X
1 1 1

-aI + \22X

-L2 + X 1

-%2 + X2

Suppose that

X2 = X 1

c1 -2 X 1

a 2 = 3 X (145)
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Then the poles of Y2 (s) are

PiX1

2X1

(I + Pl)X1

(P2 + l)X1

(0 3 + l)X 1

(P 3 + p1 )X 1

2 P2X1

(P2 + P3)Xl

( 2 P3'

Assume that we select p1 = 4.5, P2 = 1.2, p3 - 3.9, then the
poles are

x1' 21' 2.2XV, 2.4XI, 4.5X 4.9I, 5.1XI, 5.5X1, 5.7X1 ,

7.8X1 , 8.4X1V 91X.

These poles are bunched in essentially two groups:

0 2.4X1) and (4.5XI * 9X 1 ).

If a filter with a 3-dB bandwidth of approximately 2.4X is used
on the output of the system under test, the resultant of1tput
contains the contributions of only a limited number (in this case,
four) of the poles of Y2 (s).
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The performance of this approach was evaluated using the
computer simulation of the identification technique. The system
considered was, once again, that given by

H(s) 2.8069192 x 10 5  2.7368441 x 10 8

s + 0.011550998(2w)(106) a + 10.616986(2n) x 106

(146)

The filter transfer function was assumed to be

7A
HA(S) = 1.2 x (17H v (147)

A 5A

where the pole location y was left variable. The simulation was
to evaluate the poles of I two-pole system representation of
H(s)H (s), where the two poles to be identified are the two low
frequAncy poles, -0.011550998(271) x 106 and y,. The pole of in-
terest is that at s - -0.011550998(2w) x 106 since y1 will be
selected by the user and will be known.

This procedure was simulated for y1 = 0.51 (2w) x 106 and an
input

x(t) - e- 02(2n) x 10 6 t

The results are tabulated in Table 6. These results indicate that
this approach produces acceptable performance if the integration
time is increased above that used for the original system identifi-
cation. This J-; to be expected because, in this case, the identi-
fication technique is attempting to identify two low frequency
poles instead of one low and one high frequency pole; this, in
general, will require longer integration times.

This procedure was repeated for an input given by

-2n x 106tx(t) - e

The results are presented in Table 7. These results basically
agree with those of Table 6 and support the need for increased
integration time.
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The identifjo-i tea technique can then be used to evaluate the
residues of tbrw"e poles. Once these residues are known, the
technique can brt repeated without using the filter. The known
portion of Y2 (s) can be subtracted out before processing and the
resultant identification problem is reduced to one of lesser order
(in this case, 8 instead of 12).

An alternative approach at this point, once 4 of the 12
residues have been identified, is to attempt to select the aA to
separate the remaining poles into distinct groups and use a dif-
ferent filter to limit the number of poles of Y (s). This essen-
tially repeats the original identification technique approach
but on the reduced order system.

The key to the technique is to use a filter which effectively
i attenuates the contributions of the poles outside the frequency

band of interest. Consider the example shown below. The system
response is as shown in Figure 5.

Sf fH f

Figure 5. Example System Frequency Response

The filter should have a break frequency equal to or slightly
greater than fL. The amplifier response should be down con-
siderably at frequency NH to effectively attenuate the frequency
response of Y',(s) above fH. An attenuation of at least 20 dB
seems reasonable for adequate performance of the technique.

Another approach to reducing the order of Y2 (s) for identifi-
cation purposes is presented here. It has been shown (Reference
2) that the pencil-of-functions identification technique can be
modified to divide the frequency spread of the system output
into three bands: low, midrange and high. The identification
technique is applied by selecting an appropriate input frequency
fairly well matched to one of the frequency ranges given above.
This procedure is repeated for each frequency range. The total
transfer function is obtained by matching the functions at the
transition points between frequency ranges and slightly modifyin6
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pole locations and gain constants. This technique has been shown I -

(Reference 2) to produce accurate results while reducing the
order of the identification problem. I-

Appropriate selection of integration time for the identifica-
tion technique can be used in special cases to reduce the order
of the identification technique. Consider a two-pole system with
poles X1 and X2 , where X2 >> X1. If a short integration time is
used, e.g., T 1/Xj1 , the system output will be impacted very
little by the low frequency pole. This is because the contribu-
tion from the pole s - X, is essentially constant over the inte-
gration period. This implies that the variation of the system
response over the integration period is due to the high frequency
pole only.

In order to demonstrate how such a technique would perform,
we once again consider the system

H(S) 2.8069192 x 105 2.7368441 x 108

s + 0.011550998(2n) x 106 S + 10.616986(2?r) x 106

(148)

The analysis of Reference 1 (Part I of this study) demonstrated
that an integration time of 9.6 us resulted in generally favorable
performance of the identification technique. For this analysis,
this integration is varied from 0.0024 us to 2.4 us, and the per-
formance of the identification technique is investigated. The
simulation is set up to identify a single pole system, in this
case, the high frequency pole at s = -10.616986(2r) x 106.

The results of this simulation are shown in Table 8. The re-
sults indicate that, if a short integration time (compared to the
reciprocal of the low frequency pole) is used in the identifica-
tion processing, then the high frequency pole and corresponding
residue of H(s) are accurately predicted. The results indicate
that at least a 100:1 reduction in integration time from the
original 9.6 us is required to effectively isolate the high fre-
quency pole response. These results suggest that the integration
time be less than 1/(high frequency pole) for accurate identifica-
tion performance.

This integration time approach is related somewhat to the
wide-band processing approach of Reference 2. This is a good
technique to use on wide-band systems where there are a set of
low frequency poles and a set of high frequency poles. Once the
high frequency poles and residues are identified, the normal
identification procedure is followed and the contributions of the
high frequency poles are subtracted out from the system output be
fore pencil-of-functions processing.
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F. SEPARATION OF RESPONSES

An important requirement for the identification technique is
the ability to excite the nonlinear system such that the linear
response is isolated from second- and higher-order responses and
that the linear plus second-order response is isolated from
third- and higher-order responses. This requirement impacts both
the feasibility of implementing the identification tecnnique auu
the computational complexity involved in identifying the non-
linear impulse responses. This critical issue is addressed in
detail in this section. 1

The basic assumption on which the identification technique
is founded is that the nonlinear system can be excited in such
a manner that the system response is linear. Techniques of vali-
dating linear operation of a nonlinear system are addressed in
detail in Reference 3. Basically, the nonlinear system is ex-
cited by a sinusoidal signal of amplitude A and a spectral analy-
sis of the system response is obtained. Amplitude A is adjusted
until the spectral content of the system output shows that the
magnitude of second and higher order harmonic frequencies is
significantly below that of the fundamental component. This pro-
cedure permits determination of the linear impulse response of
the nonlinear system, hl(t). Identification of h1 (t) leads, as
has been shown previously, to identification of the natural fre-
quencies of the second and third-order impulse responses. There-
fore, it is a key element in the identification process.

If the nonlinear system cannot be excited such that its out-
put response is linear, the identification procedure increases
in complexity but the second-order impulse response, h 2 (t 1 , t 2 )
can still be identified. This fact is demonstrated below.

Assume that the nonlinear system can be excited such that
only y1 (t) + y2(t) can be isolated from third- and higher-order
system responses. Define ya(t) as

ya(t) - Yl(t) + Y2(t) (149)

and

Ya(S) - Yl(s) + Y2(s). (150)

The poles of Ya(s) are given by

s ak + ak 2 kI = 1, ... ,M; k 2 = 1,...,N

s f -a + ak2; i = 1,... ,L; k2 2 1...
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s =c-.i=-,j; iL

Ss =-a ; i = = 1... ,L .

.s ak k = 1,..N
k 2 '(151)2

There are 2N(N + 1) + N poles if L i N, as is generally the
case. Since N may not be known, assume that L - 1. Then, theS~number of poles in Ya(S) is

"N(N + Q) N2  5N
2N+2 2 +- + 2 (152)

These poles are of the form

x; i += I,.. .N

-a+

-a 1

If the identification process is applied to the response,
y1 (t) + y 2 (t), then 8 and the poles of Ya(S) will be identified.
By associating the identified poles with the above list, it will
be possible to identify theXi, i = 1,....,N. The number of poles
in the linear system, N, can be found from B.

This association will be done as follows. In the list of
identified poles, there will be N pairs of poles having the rela-
tionship

aj = 2a,

ak - 2 am (153)

where aj. ak, a , am are identified poles. Furthermore there
will be identifiedpole pairs of the form

an = -al + ap (154)

where al is known from the input. It is noted that sufficient
data is available to identify the poles Xi, i - 1, .. ,N of the
linear system. The residues of the poles of the linear transfer
function can be found from the residues of the poles of Ya(s)
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corresponding to s = -al. Then the Aklk 2 quantities of h 2 (tl,t 2 )
can be found in the normal way.

This is shown here.

Given a nonlinear system with a linear transfer function
given by

NR. (155)
Hl(s) .

and an input X(s) given by

L
x(S) .r .. (156)

i=1s + a

the linear response is described by

N LI 1Ci ___(157)Zi(s) E z - (57
J=l ii i S aj S + ai

The second-order response is given by

M N L L

2 Ck 2 1fi klffi i=1i ,Jffil 2

-1 a +a J , 2 a k
(a i + ak)( + 1 + ak+ a( J k~I aak)(I ak 2 J

s~ ~ ) (ak +ak2 (aj+ak )(a i + -ak2)s + (ak+ ak) a + a +

k 2 _ 1 k

(aj~ ak + 2a kl k2-

(a j + a) (ai + a) (ai + aj + ak1+ a)X

Ss + a i + a: (158)
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If the response obtained is y1 (t) + y2 (t), then Yl(s) + Y2 (s)
contains poles at s= ak2, k 2 - 1, .. .,Nwhoseresidues are of the
form

C2R (0i + ak) AN+j C

Sai + aj+ (ak) (a "(i + a + a

The pole of Yl(s) + Y2 (s) at s - -ai has a residue given by

N R Ci
E i +

If L = N, then there are N equations of the form

R1C R2C RNC
1 1 + 21 +" + Ni

1 2 Nl ~

RC RC RC-
1 N + N * + JL -(159)

ON + al I LN + a 2  N + N N

or in matrix form

C2  C2  C2ai + al al + a2 CL + aN 1 8

c 2 c 2 c 2
a2 +1a a2 +a 2  a 2 +aN R2

C CN CN
CN CN ... N___

aN + a aN + a2  N + aN RN 8 N- L. . L( 160 )

or [A] [R]-- 18] in matrix form.

For linear And•pendence, it is necessary that

det [A] • 0 (161)
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This has been shown in Reference 3 provided

ai • aj for any 1, J = 1,...,N; 1 0 j

t a, for any 1, j = 1,...,N; i j

as is the case for the identification technique.

Although the procedure is more complicated, the linear and
second-order impulse responses can be identified even if the
second-order response cannot be isolated from the linear response.
The practical application of this procedure may be complicated by
the need to determine 8. This is a potential numerical accuracy
problem. However, in theory at least, the linear response need
not be isolated from the second-order response.

Another complication in the identification procedure arises
if the second-order response cannot be isolated from the third-
order response. Assume that the linear impulse response of a
nonlinear system has been identified. If the system cannot be
excited such that the response y1 (t) + Y2 (t) is obtained, then
the identification technique will use the response yl(t) + Y2(t)
+ y 3 (t), where it is assumed that fourth and higher order re-
sponses are negligible compared to third order. For convenience,
we define

Yb(t) = y 2 (t) + y 3 (t) (162)

and

Yb(S) = Y2 (s) + Y3 (s) (163)

where y1 (t) has been subtracted out using knowledge of Hl(s) and
hl(t). The poles of Yb(s) are given by

s = aak + ak2 + a k 1 ... ,J; k 2  ,...,;k 1,...,N

s = a ai - ak + ak 3 ; i,k =,...,L; k3  1,...,N

s 8 - ai - aja k i,j,k 1,...,L

s = ak1 + ak2 k = 1,...M; k2= 1,.. .,N

s- a + a 1,...,L; k 1 .,N

2!
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- - ac ; i,j , 1,L

s a . + a + a k ik 3  1, N; k 2  1 ,M (164)
S2 k 3

All of these quantities are known, since it was assumed that
hi(t) has been identified. The problem is to identify the Akjk2
of h 2 (tl,t 2 ). The poles of Yb(s) which contain information a out
the Akjk 2 are given by

s = a8L + ak2; k 1 = i,....,M; k 2  1,...,N
*1 1  2

S = -i + a i = 1,2... Lk = 1,...,N

s - i - a i,J = 1,... ,L

The poles of Y2 (s) that correspond to poles of Y3 (s)are those
for which

ak + ak + ak= ak4 ak

k 1,...,J; k2 = 1,... ,M; ki 1 .... N; k4 = 1,...,M

k 5  1 ,...,N

and

ak1 + ak = ak4; k 2 ,k 4 a 1,...,N;k 1 i,....M (166)

These correspond to poles of the form

Xi j=1,....N

X + X = 1,... ,N

ai +X• i,J=1,...,N (167)

If the residues of these poles are known, then a set of equ-
ations exists that involves pairs of Aklk 2 and Ckk k quantities.

The key question is whether the Aklk 2 and Cklk 2 k 3 quantities
can be determined.
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Suppose we consider the pole at s = A1 + X2. The residues
involve the following quantities

A C~4 CAI2 CI,2,1, CI,2,2'..... C ,2,N

This implies that there are N + 1 unknown coefficients in the
residue equation for the pole at s - X1 + A2. It is necessary
to determine if these quantities can be solved for using the
residues of Y2 (s) + Y3 (s). It is shown in Reference 3 that the

quantities of the form Ciij, Ciji, C i, i,J - 1,...,N

Si • , are identified from the poles of Y3 (s given by s = Xi
S+ j + X ; ij, k = 1,... N; i ý J, j ý k. Since these poles are
unique 'o Y3(s), the above Cijj, Cjj, and Cjjj quantities can
be determined in the usual manner. Once these are known, the
Aij quantities are found directly from the residue at s = X1 + A2 .
Similarly, all the Aklk2, kl, k2 = 1,... ,N kI ý k2 , can be found

h from the poles of Y2 (s) + Y3 (s) at s Xki + Xk2.

In Reference 3, it is shown that the Cklk 2 k 3 are identified
from residues of the poles at

s = 3X.

s = 2KX + . ij f,.. ,N; i j J

s = •. + •. + Xk ij,k = 1,...,N; i f J f k

S= - •i + A. + Xk i fixed, j ý k; J,k = 1,... ,N

s i + A. j - 1,...,N (168)

All of these poles can be used to identify the Cklk~k3 as is
normally done except for the poles at s -- a + 4  We now
consider the portion of the response Y2 (s)+Y 3 (s)Jdue to the
pole at s = -ai + Xj. The unknown Cklk k3 quantities are of the
form Cklmn where kl>N, m>N, n<N and m aid n are such that

am + an = 1 *. (169)

The unknown Ak k quantities are of the form Ak 1' Ak,1 ... AkN
1 2 1k c NN

where k1 > N and a + a . There are N pairs of (am, an)1 kc J V m, n
such that ami +a =a XI The portion of the third order response

due to the poles a -a + is given by
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J ( L L[ a + + 2a

Y3 c(S) inl iW1 (;a j c )(.j4am Inkl'N+l ai+ a kI i- 1 sl+m

C L L 2am2
l-+ak Z [- 3 +iiam2  )
+a i 4a.+ )(cii-m)(O-i+aj+aml+anl) lak 2~ ~

.1~C m2 .~ lnf L L.~+. + - s;
cti+cii+am "" at +ak i=1 i=l

,,I

-1- a j2+c a n2 1 1 1 1
-3 (Jj+am.) c +c +a + + - (170)

The portion of the second-order response at s - - ai + x is

given by AkI Ak 2

Y (S) = [(al i\~l + a 1 ) + ( + a

2c k (a1  + j akl/x =1 (ci 1 1

L I AN L
1 + E.

i=1 ( i a + a2 ) l" iN + ak i=l (ci + aN)]

(171)

There are 2N3 unknown Cklkkj quantities and N2 unknown Aklk 2

quantities in the Y2c(s) + Y3c s' portion of the response.

The residue at pole s- a + A is defined to be 01. The

functional form of the residue 6an b1 written as
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3C kklmln Ck mn Ckmn I3 E CL + I +2a2 a2 +' ' + •NaN
ki mN+l 1l ki2 + i N + i+ ak + N y

kiaN + a k 1 a 2 + ak 82 +'".+ N + a k N

ki N+lf1 akiY 1 + k1 ~+aklN] (172)

This can be reduced to

MA /3Ok m n + AkI2
1/¢lmn~ 1 A1 1 1 2 2"'2a2 +2

ka=N+l a+ ) A +a )
ak N a 2 ka

( k N Nl+lElI 3 Cklm2 n2 2
a +ak=kla+a O + ak

3CRlm nN a.+..+ 1  N2

a + aN (173)
3akN]

Let r1= 8i/ ' then rewrite equation (173) as

r 1M 1{ 1 1 a +. ..+ (3C1m1 1 1k N) N

3C 3Ckn
J i km 1n1  ki m 1n11

al +a a1+ '+ aN el (174)
k1 =M+l 1 ak 1

Furthermore, equation (173) can be rewritten as

2N2 F.
z i a = I (175)
i-I c X1 + f
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where F C C + A ) for kl which have nonzero
Sk i Ckmn and ci=O for i>N

A similar equation to (175) is obtained for each value of
mi, i=l, ... ,L. If L-2N2, then the identification technique
generates the equations

Sj~l aI+ fj

222N2

i W (176)j+l a1 + 2

2N2  F.Z~ ci 1 + f 62 N

J=1 '2NN
J~l •2N2 + j

The set of equations in (176) was previously shown to be linearly
independent. Therefore, the Ret of equations provides a unique
solution for the Fj quantities.

There still remain N pairs of Cklk2k 3 and Aklk 2 terms which

have not been identified. These are of the form

3 Ckk + Akl I1

These quantities must be separated to completely identify
h 2 (t ,t ) and h 3 (tI t2,t 3 ). There is a need to find a way to
sepadatly identify' tese Aklk 2 and Ckkk quantities.

The only source for unique identification of the Ak 1 k quan-
tities is the residues of the poles at s - -ai - " Tae§e poles
"are unique to Y2 (s) and the residues involve &nly 4he unknown
Akaka quantities. The problem is to demonstrate whether or not
th s• residues can be used to generate a set of linearly inde-
pendent equations to permit solution for the Akjk2 . Consider the
pole at s -2a1. The residue is of the form
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Oa1+A 1) k 1" k2-=1 k k2 (I + a k2

1 N N [ 1

(2a 1 + x 2) k,, l_ k2 - k1 kk2  1 k2
Ak .(al •) • • ak2)]

N N 1
÷ + 1 A- 1Na' 1 "

t1 + A2 ) k N'= 1  k 2 1 1

N'

where kl', k, ... kN correspond to those values of k for
which A lre unkno'wn. This equation involves N2 unknown Akik2
quantit es. Analysis has not been able to show that this set
of equations is linearly independent or dependent. The equations
of interest for linear independence become

N Ci 1 2N Ci
r + E.

-3. + a a + a 2a + a
1 1ai-21 + 2 i.. N+lcall+'

N2  
C 1

1 aN a + a o2al+ N i-N -N+l

1 N Ci 1 2N Ci
2N l2 + a i=1 a 2 a 2  i"N a2 + aai

1 N2  C_ i+ + 2a2 + aN +aj 1
:iN2-N+1

I N Ci 1 2N C i
2a +a EC + 2a +a•N ÷ 1 i-I aN N2 N 22 + a2 i-N+l aN + a

.+ +, I+ 1 • 0
2 a N + a N i= _ + N + a i

(177)
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I If this set of equations implies C -0, i-i ., N, then the set
of equations involving the Aklk2 i• linearly independent. Succes-
sive solution of these simultaneous equations does not produce a
factorable polynomial to demonstrate independence. The resultant
equation cannot be solved and linear dependence or independence
cannot be shown. A similar situation exists for the unknown
Cklk2k3 quantities and the poles at s = -ai - aj - ak that are
unique to Y3 (s).

This analysis has failed to demonstrate that there is no need
to isolate the second-order system response from the third-order
response. Therefore, it is concluded that, for a practical im-
plementation of the identification technique, it is necessary to
excite the nonlinear system so that the third order and higher
order responses are negligible compared to the linear and second
order response.

G. ALTERNATIVE IDENTIFICATION PROCESSING ALGORITHMS

The identification technique described in this report is based
on the pencil of functions approach to linear system identifica-
tion. The first step in the nonlinear identification process is
the identification of the poles and residues of the linear system
transfer function. The pencil-of-functions approach is well-
suited to accomplishing this identification. The second step in
the nonlinear system identification process is the identification
of the residues of the poles of Y2 (s). These poles of Y2 (s) are
known once the linear transfer function is identified. The
pencil-cf-functions approach is still used, but it must be noted
that other potential methods of identifying the residues of the
poles of Y2(s) exist that might alleviate some of the computa-
tional complexity associated with the pencil-of-functions approach.

The basic problem at this point is to identify the Rk quanti-
ties in the equation

y2t(t) E R k (178)
\t) k=1

where Y2(t) is the second order response of a nonlinear system.
In this equation, the Ek are known, since they are related to the
poles of the linear transfer function of the system. A sampled
time history of y 2 (t) is obtained via measurement of the output of
the nonlinear system. The objective then is to use this infor-
mation to evaluate the Rk.
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A detailed review .f several candidate algorithms for solving
this problem has been addressed in Reference 6. These identifi-
cation approaches include the least-squares method, orthonormal
least squares method, equality of derivatives method, equality of
integrals methodand the generalized integrated squared error.
Details of these approaches are given in Reference 6 and are not
repeated here.A

The basic approach used in many of these methods is to sample
the time function (in this case, y 2 (t)) M times where M > B [B is
the number of poles in Y2 (s) or natural frequencies in Y2(t) )
Then, each technique attempts to minimize an error function to
determine an "optimum" set of Rk coefficients. In general these
techniques require inversion of a B x B matrix to determine the
Rk coefficients. The matrix entries involve functions of the
e-Ekt and in this sense are very similar to the technique used in
the pencil-of-functions approach. The advantage of the pencil-of-
functions method is that no approximations are used as is the
case with these overdetermined system approaches (M > B). Because
of this advantage and the requirement that a B x B matrix be in-
verted by these other identification techniques, the pencil-of-
functions approach appears to be as good a candidate for this
nonlinear system identification technique as the others described
in Reference 6.
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